• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Climate-driven synchrony in growth-increment chronologies of fish from the world's largest high-elevation river

    Author(s)
    Tao, Juan
    Kennard, Mark J
    Jia, Yintao
    Chen, Yifeng
    Griffith University Author(s)
    Kennard, Mark J.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Understanding how sensitive aquatic ecosystems respond to climate change is essential for effective biodiversity conservation and management. The Tibetan Plateau (TP) is one of the most globally sensitive areas to climate change with potentially serious implications for resident fish populations and aquatic food webs. However, how the growth of TP fish responds to climate change, and how this response varies with the trophic level of different species remain unknown. We established growth-increment chronologies of two important Schizothoracinae fishes that are endemic to the TP (e.g., the omnivorous Schizopygopsis younghusbandi ...
    View more >
    Understanding how sensitive aquatic ecosystems respond to climate change is essential for effective biodiversity conservation and management. The Tibetan Plateau (TP) is one of the most globally sensitive areas to climate change with potentially serious implications for resident fish populations and aquatic food webs. However, how the growth of TP fish responds to climate change, and how this response varies with the trophic level of different species remain unknown. We established growth-increment chronologies of two important Schizothoracinae fishes that are endemic to the TP (e.g., the omnivorous Schizopygopsis younghusbandi and the carnivorous Oxygymnocypris stewartii) from the Yarlung Tsangpo River, using otolith increment width measurements and dendrochronological methods. These growth chronologies were correlated with key indicators of environmental variation (temperature, precipitation, and river discharge) to examine the potential effects of climate change. The two chronologies displayed synchronous responses to recent climate change. In this glacial-fed river, the growth of both fish species was significantly and negatively correlated with the mean annual air temperature, while it was positively but not significantly correlated with precipitation and discharge. The higher trophic level species O. stewartii was more sensitive to climate than was the lower trophic level species S. younghusbandi, with temperature variables explaining a higher proportion of growth variability in O. stewartii (64.6%) than in S. younghusbandi (46.4%). The results collectively indicate that both species are highly sensitive to climate change, which may affect fish growth by altering water environment, fish physiological fitness and food availability. This study provides further empirical evidence of the utility of growth-increment chronologies for investigating the effects of climate change on aquatic ecosystems across different basins and water body types of the TP. These findings can inform conservation and management actions related to addressing climate change on the TP and other high-elevation temperate systems found worldwide.
    View less >
    Journal Title
    Science of the Total Environment
    Volume
    645
    DOI
    https://doi.org/10.1016/j.scitotenv.2018.07.108
    Subject
    Ecological impacts of climate change and ecological adaptation
    Publication URI
    http://hdl.handle.net/10072/382355
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander