Changing resource landscapes and spillover of henipaviruses

View/ Open
Author(s)
Kessler, Maureen K
Becker, Daniel J
Peel, Alison J
Justice, Nathan V
Lunn, Tamika
Crowley, Daniel E
Jones, Devin N
Eby, Peggy
Sanchez, Cecilia A
Plowright, Raina K
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
Old World fruit bats (Chiroptera: Pteropodidae) provide critical pollination and seed dispersal services to forest ecosystems across Africa, Asia, and Australia. In each of these regions, pteropodids have been identified as natural reservoir hosts for henipaviruses. The genus Henipavirus includes Hendra virus and Nipah virus, which regularly spill over from bats to domestic animals and humans in Australia and Asia, and a suite of largely uncharacterized African henipaviruses. Rapid change in fruit bat habitat and associated shifts in their ecology and behavior are well documented, with evidence suggesting that altered diet, ...
View more >Old World fruit bats (Chiroptera: Pteropodidae) provide critical pollination and seed dispersal services to forest ecosystems across Africa, Asia, and Australia. In each of these regions, pteropodids have been identified as natural reservoir hosts for henipaviruses. The genus Henipavirus includes Hendra virus and Nipah virus, which regularly spill over from bats to domestic animals and humans in Australia and Asia, and a suite of largely uncharacterized African henipaviruses. Rapid change in fruit bat habitat and associated shifts in their ecology and behavior are well documented, with evidence suggesting that altered diet, roosting habitat, and movement behaviors are increasing spillover risk of bat‐borne viruses. We review the ways that changing resource landscapes affect the processes that culminate in cross‐species transmission of henipaviruses, from reservoir host density and distribution to within‐host immunity and recipient host exposure. We evaluate existing evidence and highlight gaps in knowledge that are limiting our understanding of the ecological drivers of henipavirus spillover. When considering spillover in the context of land‐use change, we emphasize that it is especially important to disentangle the effects of habitat loss and resource provisioning on these processes, and to jointly consider changes in resource abundance, quality, and composition.
View less >
View more >Old World fruit bats (Chiroptera: Pteropodidae) provide critical pollination and seed dispersal services to forest ecosystems across Africa, Asia, and Australia. In each of these regions, pteropodids have been identified as natural reservoir hosts for henipaviruses. The genus Henipavirus includes Hendra virus and Nipah virus, which regularly spill over from bats to domestic animals and humans in Australia and Asia, and a suite of largely uncharacterized African henipaviruses. Rapid change in fruit bat habitat and associated shifts in their ecology and behavior are well documented, with evidence suggesting that altered diet, roosting habitat, and movement behaviors are increasing spillover risk of bat‐borne viruses. We review the ways that changing resource landscapes affect the processes that culminate in cross‐species transmission of henipaviruses, from reservoir host density and distribution to within‐host immunity and recipient host exposure. We evaluate existing evidence and highlight gaps in knowledge that are limiting our understanding of the ecological drivers of henipavirus spillover. When considering spillover in the context of land‐use change, we emphasize that it is especially important to disentangle the effects of habitat loss and resource provisioning on these processes, and to jointly consider changes in resource abundance, quality, and composition.
View less >
Journal Title
Annals of the New York Academy of Sciences
Volume
1429
Issue
1
Copyright Statement
© 2018 New York Academy of Sciences. This is the peer reviewed version of the following article: Changing resource landscapes and spillover of henipaviruses, Annals of the New York Academy of Sciences, Vol.1429 pp. 78–99, 2018, which has been published in final form at 10.1111/nyas.13910. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-828039.html)
Subject
Landscape ecology
Veterinary virology
Public health
Henipaviruses
Hendra virus
Nipah virus
Roosting habitat
Movement behaviors
Cross‐species transmission