• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Red blood cell mechanical sensitivity improves in patients with sickle cell disease undergoing chronic transfusion after prolonged, subhemolytic shear exposure

    Author(s)
    Simmonds, Michael J
    Suriany, Silvie
    Ponce, Derek
    Detterich, Jon A
    Griffith University Author(s)
    Simmonds, Michael J.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Background: Sickle cell disease (SCD) is a genetically inherited hemoglobinopathy in which deoxygenated hemoglobin S polymerizes, leading to stiff red blood cells (RBCs) and inefficient microcirculatory blood flow. Transfusion therapy acts as primary and secondary prevention of ischemic stroke in SCD. Whether blood transfusion alters the mechanical sensitivity (MS) of RBCs to prolonged subhemolytic shear stress (shear) is unknown. We hypothesized that individuals with SCD undergoing chronic blood transfusion would have improved sensitivity to shear, compared with patients not undergoing transfusion therapy. Study Design and ...
    View more >
    Background: Sickle cell disease (SCD) is a genetically inherited hemoglobinopathy in which deoxygenated hemoglobin S polymerizes, leading to stiff red blood cells (RBCs) and inefficient microcirculatory blood flow. Transfusion therapy acts as primary and secondary prevention of ischemic stroke in SCD. Whether blood transfusion alters the mechanical sensitivity (MS) of RBCs to prolonged subhemolytic shear stress (shear) is unknown. We hypothesized that individuals with SCD undergoing chronic blood transfusion would have improved sensitivity to shear, compared with patients not undergoing transfusion therapy. Study Design and Methods Blood suspensions from individuals with SCD not receiving (n = 15) and receiving (n = 15) chronic simple transfusion were conditioned to shear (1, 4, 16, 32, and 64 Pa) for various durations (1, 4, 16, 32, and 64 sec), and then deformability of RBCs was immediately measured. Healthy young controls (n = 15) were included for reference. A surface mesh was interpolated using the data to determine the effect of blood transfusion on MS of RBCs. Results: There was impaired RBC deformability to prolonged supraphysiologic shear in both SCD groups; however, MS improved in transfused patients when exposed to prolonged physiologic shear. Furthermore, in the transfused patients with SCD, the threshold above which subhemolytic damage occurs was similar to controls. Conclusion: We found that chronic transfusion therapy normalizes the MS threshold above which RBC subhemolytic damage occurs after prolonged shear exposure in SCD. An important and novel finding in transfused patients with SCD was the improvement in RBC deformability in response to prolonged shear exposure over the physiologic range
    View less >
    Journal Title
    Transfusion Medicine
    Volume
    58
    Issue
    12
    DOI
    https://doi.org/10.1111/trf.14901
    Subject
    Cardiovascular medicine and haematology
    Clinical sciences
    Clinical sciences not elsewhere classified
    Immunology
    Publication URI
    http://hdl.handle.net/10072/382392
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander