• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic

    Thumbnail
    View/Open
    SekinePUB494.pdf (543.1Kb)
    Author(s)
    Wang, Peng
    Menzies, Neal W
    Lombi, Enzo
    Sekine, Ryo
    Blamey, F Pax C
    Hernandez-Soriano, Maria C
    Cheng, Miaomiao
    Kappen, Peter
    Peijnenburg, Willie JGM
    Tang, Caixian
    Kopittke, Peter M
    Griffith University Author(s)
    Menzies, Neal W.
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Silver nanoparticles (NPs) are used in more consumer products than any other nanomaterial and their release into the environment is unavoidable. Of primary concern is the wastewater stream in which most silver NPs are transformed to silver sulfide NPs (Ag2S-NPs) before being applied to agricultural soils within biosolids. While Ag2S-NPs are assumed to be biologically inert, nothing is known of their effects on terrestrial plants. The phytotoxicity of Ag and its accumulation was examined in short-term (24 h) and longer-term (2-week) solution culture experiments with cowpea (Vigna unguiculata L. Walp.) and wheat (Triticum ...
    View more >
    Silver nanoparticles (NPs) are used in more consumer products than any other nanomaterial and their release into the environment is unavoidable. Of primary concern is the wastewater stream in which most silver NPs are transformed to silver sulfide NPs (Ag2S-NPs) before being applied to agricultural soils within biosolids. While Ag2S-NPs are assumed to be biologically inert, nothing is known of their effects on terrestrial plants. The phytotoxicity of Ag and its accumulation was examined in short-term (24 h) and longer-term (2-week) solution culture experiments with cowpea (Vigna unguiculata L. Walp.) and wheat (Triticum aestivum L.) exposed to Ag2S-NPs (0–20 mg Ag L−1), metallic Ag-NPs (0–1.6 mg Ag L−1), or ionic Ag (AgNO3; 0–0.086 mg Ag L−1). Although not inducing any effects during 24-h exposure, Ag2S-NPs reduced growth by up to 52% over a 2-week period. This toxicity did not result from their dissolution and release of toxic Ag+ in the rooting medium, with soluble Ag concentrations remaining below 0.001 mg Ag L−1. Rather, Ag accumulated as Ag2S in the root and shoot tissues when plants were exposed to Ag2S-NPs, consistent with their direct uptake. Importantly, this differed from the form of Ag present in tissues of plants exposed to AgNO3. For the first time, our findings have shown that Ag2S-NPs exert toxic effects through their direct accumulation in terrestrial plant tissues. These findings need to be considered to ensure high yield of food crops, and to avoid increasing Ag in the food chain.
    View less >
    Journal Title
    Nanotoxicology
    Volume
    9
    Issue
    8
    DOI
    https://doi.org/10.3109/17435390.2014.999139
    Copyright Statement
    © 2015. Nanotoxicology. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher, Taylor & Francis Online. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Biomedical engineering
    Nanotechnology
    Nanotechnology not elsewhere classified
    Cowpea
    Silver nanoparticles
    Transformation
    Uptake
    Wheat
    Publication URI
    http://hdl.handle.net/10072/382397
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander