Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Donner, E
Scheckel, K
Sekine, R
Popelka-Filcoff, RS
Bennett, JW
Brunetti, G
Naidu, R
McGrath, SP
Lombi, E
Griffith University Author(s)
Year published
2015
Metadata
Show full item recordAbstract
Increasing commercial use of nanosilver has focussed attention on the fate of silver (Ag) in the wastewater release pathway. This paper reports the speciation and lability of Ag in archived, stockpiled, and contemporary biosolids from the UK, USA and Australia, and indicates that biosolids Ag concentrations have decreased significantly over recent decades. XANES revealed the importance of reduced-sulfur binding environments for Ag speciation in materials ranging from freshly produced sludge to biosolids weathered under ambient environmental conditions for more than 50 years. Isotopic dilution with 110mAg showed that Ag was ...
View more >Increasing commercial use of nanosilver has focussed attention on the fate of silver (Ag) in the wastewater release pathway. This paper reports the speciation and lability of Ag in archived, stockpiled, and contemporary biosolids from the UK, USA and Australia, and indicates that biosolids Ag concentrations have decreased significantly over recent decades. XANES revealed the importance of reduced-sulfur binding environments for Ag speciation in materials ranging from freshly produced sludge to biosolids weathered under ambient environmental conditions for more than 50 years. Isotopic dilution with 110mAg showed that Ag was predominantly non-labile in both fresh and aged biosolids (13.7% mean lability), with E-values ranging from 0.3 to 60 mg/kg and 5 mM CaNO3 extractable Ag from 1.2 to 609 μg/kg (0.002–3.4% of the total Ag). This study indicates that at the time of soil application, biosolids Ag will be predominantly Ag-sulfides and characterised by low isotopic lability.
View less >
View more >Increasing commercial use of nanosilver has focussed attention on the fate of silver (Ag) in the wastewater release pathway. This paper reports the speciation and lability of Ag in archived, stockpiled, and contemporary biosolids from the UK, USA and Australia, and indicates that biosolids Ag concentrations have decreased significantly over recent decades. XANES revealed the importance of reduced-sulfur binding environments for Ag speciation in materials ranging from freshly produced sludge to biosolids weathered under ambient environmental conditions for more than 50 years. Isotopic dilution with 110mAg showed that Ag was predominantly non-labile in both fresh and aged biosolids (13.7% mean lability), with E-values ranging from 0.3 to 60 mg/kg and 5 mM CaNO3 extractable Ag from 1.2 to 609 μg/kg (0.002–3.4% of the total Ag). This study indicates that at the time of soil application, biosolids Ag will be predominantly Ag-sulfides and characterised by low isotopic lability.
View less >
Journal Title
Environmental Pollution
Volume
205
Copyright Statement
© 2015 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Other environmental sciences not elsewhere classified
Silver
Biosolids
XANES
Speciation
Isotopic dilution
E-values