In Situ Synthesis of Highly Dispersed Cu−Co Bimetallic Nanoparticles for Tandem Hydrogenation/Rearrangement of Bioderived Furfural in Aqueous-Phase
Author(s)
Gong, Wanbing
Chen, Chun
Zhang, Haimin
Wang, Guozhong
Zhao, Huijun
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
Herein, we report that highly dispersed copper–cobalt mixed metal/metal oxide nanoparticles embedded into three-dimensional porous carbon were highly catalytic active nanocomposites for transforming bioderived furfural (FAL) to cyclopentanone (CPO) via aqueous-phase hydrogenation/rearrangement. This simple and efficient catalyst was prepared by controlled pyrolysis procedure using glucose as the carbon source at 500 °C under N2 atmosphere. Characterization of the as-prepared CuCo0.8@C-500 catalyst by XRD, STEM, SEM, TEM, and XPS suggested that there was a synergism between copper and cobalt. Under an extremely low H2 pressure ...
View more >Herein, we report that highly dispersed copper–cobalt mixed metal/metal oxide nanoparticles embedded into three-dimensional porous carbon were highly catalytic active nanocomposites for transforming bioderived furfural (FAL) to cyclopentanone (CPO) via aqueous-phase hydrogenation/rearrangement. This simple and efficient catalyst was prepared by controlled pyrolysis procedure using glucose as the carbon source at 500 °C under N2 atmosphere. Characterization of the as-prepared CuCo0.8@C-500 catalyst by XRD, STEM, SEM, TEM, and XPS suggested that there was a synergism between copper and cobalt. Under an extremely low H2 pressure (0.5 MPa), 90.2% yield of CPO could be attained at 150 °C. In addition, the sample could be recycled for several times without decrease in catalytic activity. Two critical reaction intermediates of furfuryl alcohol (FOL) and 2-cyclopentenone (2-CPE) were detected in the tandem catalytic process. These results demonstrated that this synthetic strategy represented a simple and effective way for utilization of inexpensive biomass resources to obtain some valuable chemicals.
View less >
View more >Herein, we report that highly dispersed copper–cobalt mixed metal/metal oxide nanoparticles embedded into three-dimensional porous carbon were highly catalytic active nanocomposites for transforming bioderived furfural (FAL) to cyclopentanone (CPO) via aqueous-phase hydrogenation/rearrangement. This simple and efficient catalyst was prepared by controlled pyrolysis procedure using glucose as the carbon source at 500 °C under N2 atmosphere. Characterization of the as-prepared CuCo0.8@C-500 catalyst by XRD, STEM, SEM, TEM, and XPS suggested that there was a synergism between copper and cobalt. Under an extremely low H2 pressure (0.5 MPa), 90.2% yield of CPO could be attained at 150 °C. In addition, the sample could be recycled for several times without decrease in catalytic activity. Two critical reaction intermediates of furfuryl alcohol (FOL) and 2-cyclopentenone (2-CPE) were detected in the tandem catalytic process. These results demonstrated that this synthetic strategy represented a simple and effective way for utilization of inexpensive biomass resources to obtain some valuable chemicals.
View less >
Journal Title
ACS Sustainable Chemistry and Engineering
Volume
6
Issue
11
Subject
Analytical chemistry
Analytical chemistry not elsewhere classified
Chemical engineering
Macromolecular and materials chemistry