An efficient and reusable bimetallic Ni3Fe NPs@C catalyst for selective hydrogenation of biomass-derived levulinic acid to γ-valerolactone
Author(s)
Wang, Haojie
Chen, Chun
Zhang, Haimin
Wang, Guozhong
Zhao, Huijun
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
Bimetallic nanostructures have attracted great interest as efficient catalyst to enhance activity, selectivity and stability in catalytical conversion. Herein, we report a facile one-pot carbothermal route to in-situ controllable synthesize heterogeneous bimetallic Ni3Fe NPs@C nanocatalyst. The X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and N2 adsorption-description results reveal that the Ni3Fe alloy nanoparticles are evenly embedded in carbon matrix. The as-prepared Ni3Fe NPs@C catalyst shows excellent selective hydrogenation catalytic performance toward the conversion of levulinic ...
View more >Bimetallic nanostructures have attracted great interest as efficient catalyst to enhance activity, selectivity and stability in catalytical conversion. Herein, we report a facile one-pot carbothermal route to in-situ controllable synthesize heterogeneous bimetallic Ni3Fe NPs@C nanocatalyst. The X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and N2 adsorption-description results reveal that the Ni3Fe alloy nanoparticles are evenly embedded in carbon matrix. The as-prepared Ni3Fe NPs@C catalyst shows excellent selective hydrogenation catalytic performance toward the conversion of levulinic acid (LA) to γ-valerolactone (GVL) via both direct hydrogenation (DH) and transfer hydrogenation (TH). In DH of LA, the bimetallic catalyst achieved a 93.8% LA conversion efficiency with a 95.5% GVL selectivity and 38.2 mmol g−1 h−1 GVL productivity (under 130 °C, 2MPa H2 within 2 h), which are 6 and 40 times in comparison with monometallic Ni NPs@C and Fe NPs@C catalysts, respectively. In addition, the identical catalyst displayed a full conversion of LA with almost 100% GVL selectivity and 167.1 mmol g−1 h−1 GVL productivity at 180 °C within 0.5 h in TH of LA. Under optimal reaction conditions, the DH and TH catalytic performance of 500-Ni3Fe NPs@C(3:1) catalyst for converting LA to GVL is comparable to the state-of-the-art noble-based catalysts. The demonstrated capability of bimetallic catalyst design approach to introduce dual-catalytic functionality for DH and TH reactions could be adoptable for other catalysis processes.
View less >
View more >Bimetallic nanostructures have attracted great interest as efficient catalyst to enhance activity, selectivity and stability in catalytical conversion. Herein, we report a facile one-pot carbothermal route to in-situ controllable synthesize heterogeneous bimetallic Ni3Fe NPs@C nanocatalyst. The X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and N2 adsorption-description results reveal that the Ni3Fe alloy nanoparticles are evenly embedded in carbon matrix. The as-prepared Ni3Fe NPs@C catalyst shows excellent selective hydrogenation catalytic performance toward the conversion of levulinic acid (LA) to γ-valerolactone (GVL) via both direct hydrogenation (DH) and transfer hydrogenation (TH). In DH of LA, the bimetallic catalyst achieved a 93.8% LA conversion efficiency with a 95.5% GVL selectivity and 38.2 mmol g−1 h−1 GVL productivity (under 130 °C, 2MPa H2 within 2 h), which are 6 and 40 times in comparison with monometallic Ni NPs@C and Fe NPs@C catalysts, respectively. In addition, the identical catalyst displayed a full conversion of LA with almost 100% GVL selectivity and 167.1 mmol g−1 h−1 GVL productivity at 180 °C within 0.5 h in TH of LA. Under optimal reaction conditions, the DH and TH catalytic performance of 500-Ni3Fe NPs@C(3:1) catalyst for converting LA to GVL is comparable to the state-of-the-art noble-based catalysts. The demonstrated capability of bimetallic catalyst design approach to introduce dual-catalytic functionality for DH and TH reactions could be adoptable for other catalysis processes.
View less >
Journal Title
Chinese Journal of Catalysis (Cuihua Xuebao)
Volume
39
Issue
10
Subject
Other environmental sciences not elsewhere classified