2D modelling: A Monte Carlo approach for assessing heterogeneous beta dose rates in luminescence and ESR dating: Paper ΙΙ, application to igneous rocks
Author(s)
Fang, Fang
Martin, Loic
Williams, Ian S
Brink, Frank
Mercier, Norbert
Grun, Rainer
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
Accurate evaluations of beta dose rates are crucial in luminescence and electron spin resonance (ESR) thermochronology. Most igneous rocks are heterogeneous and have complex mineralogical structures that render them unsuitable for the conventional methods of beta dose rate calculations based on infinite matrix assumptions. The recently developed software DosiVox-2D provides a Monte-Carlo approach for calculating beta dose rates in realistic heterogeneous geometries. In this paper, we present 2D simulations of uniform and layered igneous rocks. For the modelling, mineral distribution maps were obtained by QEM-EDS (quantitative ...
View more >Accurate evaluations of beta dose rates are crucial in luminescence and electron spin resonance (ESR) thermochronology. Most igneous rocks are heterogeneous and have complex mineralogical structures that render them unsuitable for the conventional methods of beta dose rate calculations based on infinite matrix assumptions. The recently developed software DosiVox-2D provides a Monte-Carlo approach for calculating beta dose rates in realistic heterogeneous geometries. In this paper, we present 2D simulations of uniform and layered igneous rocks. For the modelling, mineral distribution maps were obtained by QEM-EDS (quantitative evaluation of minerals using energy dispersive spectroscopy) and radionuclide concentrations in minerals were determined by laser ablation (LA) ICP-MS. The results show that the skewness of beta dose rate distributions in quartz reduces as the K concentration in a rock increases, and the estimation of the beta dose rate can be critically influenced by the U and Th concentrations and distributions.
View less >
View more >Accurate evaluations of beta dose rates are crucial in luminescence and electron spin resonance (ESR) thermochronology. Most igneous rocks are heterogeneous and have complex mineralogical structures that render them unsuitable for the conventional methods of beta dose rate calculations based on infinite matrix assumptions. The recently developed software DosiVox-2D provides a Monte-Carlo approach for calculating beta dose rates in realistic heterogeneous geometries. In this paper, we present 2D simulations of uniform and layered igneous rocks. For the modelling, mineral distribution maps were obtained by QEM-EDS (quantitative evaluation of minerals using energy dispersive spectroscopy) and radionuclide concentrations in minerals were determined by laser ablation (LA) ICP-MS. The results show that the skewness of beta dose rate distributions in quartz reduces as the K concentration in a rock increases, and the estimation of the beta dose rate can be critically influenced by the U and Th concentrations and distributions.
View less >
Journal Title
Quaternary Geochronology
Volume
48
Subject
Geochemistry
Geochemistry not elsewhere classified
Geology
Physical geography and environmental geoscience