Ultraviolet and Visible Photodetection Using 3C-SiC/Si Hetero-Epitaxial Junction

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Foisal, ARM
Dinh, T
Tanner, P
Phan, HP
Nguyen, TK
Iacopi, A
Streed, EW
Dao, DV
Year published
2019
Metadata
Show full item recordAbstract
This paper demonstrates the prospect of using a 3C-SiC/Si heterostructure as an ultraviolet and visible photodetector. The heterojunction has been grown epitaxially on Si-substrate via a Low Pressure Chemical Vapor Deposition technique at 1000 °C. The detector shows a good diode characteristic with a rectification ratio of 1.03 × 103 and a reverse leakage current of 7.2 × 10−6 A at 2 V in dark conditions. The responsivity of the device is found to be 5.4 × 10−2 A/W and 3.18 × 10−2 A/W at a reverse bias of 2 V under visible (635 nm) and UV (375 nm) illumination, respectively. An energy band diagram is proposed to explain the ...
View more >This paper demonstrates the prospect of using a 3C-SiC/Si heterostructure as an ultraviolet and visible photodetector. The heterojunction has been grown epitaxially on Si-substrate via a Low Pressure Chemical Vapor Deposition technique at 1000 °C. The detector shows a good diode characteristic with a rectification ratio of 1.03 × 103 and a reverse leakage current of 7.2 × 10−6 A at 2 V in dark conditions. The responsivity of the device is found to be 5.4 × 10−2 A/W and 3.18 × 10−2 A/W at a reverse bias of 2 V under visible (635 nm) and UV (375 nm) illumination, respectively. An energy band diagram is proposed to explain the photosensitivity of the heterostructure.
View less >
View more >This paper demonstrates the prospect of using a 3C-SiC/Si heterostructure as an ultraviolet and visible photodetector. The heterojunction has been grown epitaxially on Si-substrate via a Low Pressure Chemical Vapor Deposition technique at 1000 °C. The detector shows a good diode characteristic with a rectification ratio of 1.03 × 103 and a reverse leakage current of 7.2 × 10−6 A at 2 V in dark conditions. The responsivity of the device is found to be 5.4 × 10−2 A/W and 3.18 × 10−2 A/W at a reverse bias of 2 V under visible (635 nm) and UV (375 nm) illumination, respectively. An energy band diagram is proposed to explain the photosensitivity of the heterostructure.
View less >
Conference Title
Smart Innovation, Systems and Technologies
Volume
130
Copyright Statement
© 2018 Springer Berlin/Heidelberg. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher.The original publication is available at www.springerlink.com
Subject
Functional materials