• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Contrasting effects of bioturbation on metal toxicity of contaminated sediments results in misleading interpretation of the AVS-SEM metal-sulfide paradigm

    Author(s)
    Remaili, Timothy M
    Yin, Naiyi
    Bennett, William W
    Simpson, Stuart L
    Jolley, Dianne F
    Welsh, David T
    Griffith University Author(s)
    Bennett, Will W.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    In undisturbed, metal-contaminated marine sediments, porewater metal concentrations are generally low due to their associations with strong binding phases such as organic matter, Fe/Mn (oxy)hydroxides and sulfides. Bioturbating fauna can alter redox conditions and, therefore, metal binding, potentially leading to increased metal bioavailability and subsequent toxicity to inhabiting organisms. Here we assessed the impacts of bioturbation (by bivalves and large amphipod species) on sediment biogeochemistry, metal bioaccumulation and toxicity to a smaller amphipod species in a metal contaminated sediment with low and high acid ...
    View more >
    In undisturbed, metal-contaminated marine sediments, porewater metal concentrations are generally low due to their associations with strong binding phases such as organic matter, Fe/Mn (oxy)hydroxides and sulfides. Bioturbating fauna can alter redox conditions and, therefore, metal binding, potentially leading to increased metal bioavailability and subsequent toxicity to inhabiting organisms. Here we assessed the impacts of bioturbation (by bivalves and large amphipod species) on sediment biogeochemistry, metal bioaccumulation and toxicity to a smaller amphipod species in a metal contaminated sediment with low and high acid volatile sulfide (AVS) concentrations. Active bioturbation lowered metal toxicity to reproduction in the sediment with low-AVS (from 90% toxic (non-bioturbated) to 50% toxic (bioturbated)). This corresponded with lower dissolved metal concentrations in the overlying water column and lower metal bioaccumulation. Conversely, toxicity increased due to bioturbation in the sediment with high-AVS (40% toxic (non-bioturbated) to 80% toxic (bioturbated)), coinciding with sulfide oxidation, metal release and greater metal bioaccumulation. The results indicate that the AVS–SEM paradigm (commonly used to estimate the risks of adverse effects to benthic organisms in metal-contaminated sediments) may result in incorrect assessment outcomes in cases where bioturbating organisms rework and oxidize the sediment, or for those sediments where AVS has accumulated due to the inability of larger bioturbating benthic organisms to establish populations.
    View less >
    Journal Title
    Environmental Science: Processes and Impacts
    Volume
    20
    Issue
    9
    DOI
    https://doi.org/10.1039/C8EM00266E
    Subject
    Chemical sciences
    Environmental sciences
    Other environmental sciences not elsewhere classified
    Biomedical and clinical sciences
    Publication URI
    http://hdl.handle.net/10072/382623
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander