• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Enhancing soluble phosphate concentration in sludge liquor by pressurised anaerobic digestion

    Author(s)
    Latif, Asif
    Mehta, Chirag
    Batstone, Damien
    Griffith University Author(s)
    Latif, Asif
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Recovery of phosphate from wastewater is challenging, with one of the best opportunities being recovery from sludge anaerobic digestion liquor, as struvite. However, this is limited by the proportion of total phosphorous which is soluble, due to in-digester metal ion precipitation. High-pressure anaerobic digestion may enable enhanced phosphate solubility (and hence recovery potential), without the use of added acid, due to an increased liquid phase CO2 concentration. This was tested at 2, 4, and 6 bar absolute (bara) vs a 1 bara control reactor, fed with activated sludge. Increased pressure significantly (p = 0.0008), ...
    View more >
    Recovery of phosphate from wastewater is challenging, with one of the best opportunities being recovery from sludge anaerobic digestion liquor, as struvite. However, this is limited by the proportion of total phosphorous which is soluble, due to in-digester metal ion precipitation. High-pressure anaerobic digestion may enable enhanced phosphate solubility (and hence recovery potential), without the use of added acid, due to an increased liquid phase CO2 concentration. This was tested at 2, 4, and 6 bar absolute (bara) vs a 1 bara control reactor, fed with activated sludge. Increased pressure significantly (p = 0.0008), increased the fraction of phosphate that was soluble, ranging from 52% at 1 bara, to 75% at 6 bara. Model based analysis indicated that the main reason for increased solubility was pH depression (down to 6.4 at 6 bara), rather than changes in ion pairing (with carbonates) or increases in ionic activity. However, biological performance was adversely impacted, with a substantial loss in VS and COD destruction (on the order of 5%–10% absolute). No organic acid accumulation was observed. Bacterial and archaeal communities were significantly impacted (p∼0.0003–0.0005), with a shift to specific organisms, including Bacteroidales Rikenellaceae within the bacteria, and a Deep Sea Euryarchaeotal Group at 2 bara, and Methanocellaceae within the archaea at 4 and 6 bara. The work indicates that high-pressure operation is a technically viable option to improve phosphate recovery, and produce a high-methane biogas product, but that the loss of overall conversion needs to be further addressed, possibly through two-stage digestion.
    View less >
    Journal Title
    Water Research
    Volume
    145
    DOI
    https://doi.org/10.1016/j.watres.2018.08.069
    Subject
    Water Resources Engineering
    Publication URI
    http://hdl.handle.net/10072/382632
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander