• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effects of rainfall patterns on runoff and rainfall-induced erosion

    Author(s)
    Alavinia, M
    Saleh, FN
    Asadi, H
    Griffith University Author(s)
    Asadi, Hossein
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Rainfall-induced erosion involves the detachment of soil particles by raindrop impact and their transport by the combined action of the shallow surface runoff and raindrop impact. Although temporal variation in rainfall intensity (pattern) during natural rainstorms is a common phenomenon, the available information is inadequate to understand its effects on runoff and rainfall-induced erosion processes. To address this issue, four simulated rainfall patterns (constant, increasing, decreasing, and increasing - decreasing) with the same total kinetic energy were designed. Two soil types (sandy and sandy loam) were subjected to ...
    View more >
    Rainfall-induced erosion involves the detachment of soil particles by raindrop impact and their transport by the combined action of the shallow surface runoff and raindrop impact. Although temporal variation in rainfall intensity (pattern) during natural rainstorms is a common phenomenon, the available information is inadequate to understand its effects on runoff and rainfall-induced erosion processes. To address this issue, four simulated rainfall patterns (constant, increasing, decreasing, and increasing - decreasing) with the same total kinetic energy were designed. Two soil types (sandy and sandy loam) were subjected to simulated rainfall using 15 cm × 30 cm long detachment trays under infiltration conditions. For each simulation, runoff and sediment concentration were sampled at regular intervals. No obvious difference was observed in runoff across the two soil types, but there were significant differences in soil losses among the different rainfall patterns and stages. For varying-intensity rainfall patterns, the dominant sediment transport mechanism was not only influenced by raindrop detachment but also was affected by raindrop-induced shallow flow transport. Moreover, the efficiency of equations that predict the interrill erosion rate increased when the integrated raindrop impact and surface runoff rate were applied. Although the processes of interrill erosion are complex, the findings in this study may provide useful insight for developing models that predict the effects of rainfall pattern on runoff and erosion.
    View less >
    Journal Title
    International Journal of Sediment Research
    Volume
    34
    Issue
    3
    DOI
    https://doi.org/10.1016/j.ijsrc.2018.11.001
    Subject
    Geology
    Soil sciences
    Publication URI
    http://hdl.handle.net/10072/382833
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander