• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An efficient method for boundary detection from hyperspectral imagery

    Author(s)
    Al-Khafaji, SL
    Zhou, J
    Liew, Wee Chung
    Griffith University Author(s)
    Zhou, Jun
    Liew, Alan Wee-Chung
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    In this paper, we propose a novel method for efficient boundary detection in close-range hyperspectral images (HSI). We adopt different spectral similarity measurements to construct a sparse spectral-spatial affinity matrix that characterizes the similarity between the spectral responses of neighboring pixels within a local neighborhood. After that, we adopt a spectral clustering method in which the eigenproblem is solved and the eigenvectors of smallest eigenvalues are calculated. Morphological erosion is then applied on each eigenvector to detect the boundary. We fuse the results of all eigenvectors to obtain the final ...
    View more >
    In this paper, we propose a novel method for efficient boundary detection in close-range hyperspectral images (HSI). We adopt different spectral similarity measurements to construct a sparse spectral-spatial affinity matrix that characterizes the similarity between the spectral responses of neighboring pixels within a local neighborhood. After that, we adopt a spectral clustering method in which the eigenproblem is solved and the eigenvectors of smallest eigenvalues are calculated. Morphological erosion is then applied on each eigenvector to detect the boundary. We fuse the results of all eigenvectors to obtain the final boundary map. Our method is evaluated on a real-world HSI dataset and compared with three alternative methods. The results exhibit that our method outperforms the alternatives, and can cope with several scenarios that methods based on color images can not handle.
    View less >
    Conference Title
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume
    11004 LNCS
    DOI
    https://doi.org/10.1007/978-3-319-97785-0_40
    Subject
    Artificial intelligence
    Publication URI
    http://hdl.handle.net/10072/382844
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander