• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Biomarkers for the identification of cardiac fibroblast and myofibroblast cells

    Author(s)
    Tarbit, Emiri
    Singh, Indu
    Peart, Jason N
    Rose'Meyer, Roselyn B
    Griffith University Author(s)
    Singh, Indu
    Peart, Jason N.
    Rose'Meyer, Roselyn B.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Experimental research has recognized the importance of cardiac fibroblast and myofibroblast cells in heart repair and function. In a normal healthy heart, the cardiac fibroblast plays a central role in the structural, electrical, and chemical aspects within the heart. Interestingly, the transformation of cardiac fibroblast cells to cardiac myofibroblast cells is suspected to play a vital part in the development of heart failure. The ability to differentiate between the two cells types has been a challenge. Myofibroblast cells are only expressed in the stressed or failing heart, so a better understanding of cell function may ...
    View more >
    Experimental research has recognized the importance of cardiac fibroblast and myofibroblast cells in heart repair and function. In a normal healthy heart, the cardiac fibroblast plays a central role in the structural, electrical, and chemical aspects within the heart. Interestingly, the transformation of cardiac fibroblast cells to cardiac myofibroblast cells is suspected to play a vital part in the development of heart failure. The ability to differentiate between the two cells types has been a challenge. Myofibroblast cells are only expressed in the stressed or failing heart, so a better understanding of cell function may identify therapies that aid repair of the damaged heart. This paper will provide an outline of what is currently known about cardiac fibroblasts and myofibroblasts, the physiological and pathological roles within the heart, and causes for the transition of fibroblasts into myoblasts. We also reviewed the potential markers available for characterizing these cells and found that there is no single-cell specific marker that delineates fibroblast or myofibroblast cells. To characterize the cells of fibroblast origin, vimentin is commonly used. Cardiac fibroblasts can be identified using discoidin domain receptor 2 (DDR2) while α-smooth muscle actin is used to distinguish myofibroblasts. A known cytokine TGF-β1 is well established to cause the transformation of cardiac fibroblasts to myofibroblasts. This review will also discuss clinical treatments that inhibit or reduce the actions of TGF-β1 and its contribution to cardiac fibrosis and heart failure.
    View less >
    Journal Title
    HEART FAILURE REVIEWS
    Volume
    24
    Issue
    1
    DOI
    https://doi.org/10.1007/s10741-018-9720-1
    Subject
    Cardiovascular medicine and haematology
    Publication URI
    http://hdl.handle.net/10072/382861
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander