• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Looking to the past to ensure the future of the world's oldest living vertebrate: Isotopic evidence for multi-decadal shifts in trophic ecology of the Australian lungfish

    Author(s)
    Olden, JD
    Fallon, SJ
    Roberts, DT
    Espinoza, T
    Kennard, MJ
    Griffith University Author(s)
    Kennard, Mark J.
    Olden, Julian
    Roberts, David T.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Meeting the conservation challenges of long‐lived animal species necessitate long‐term assessments of trophic ecology. The use of dietary proxies, such as ratios of naturally occurring stable isotopes in animal tissues demonstrating progressive growth, has shown considerable promise to reconstruct trophic histories of long‐lived organisms experiencing environmental change. Here, we combine innovative radiocarbon scale‐ageing techniques with stable isotope analysis of carbon and nitrogen from cross sections of scale to reconstruct the trophic ecology of Australian lungfish (Neoceratodus forsteri) across its remaining global ...
    View more >
    Meeting the conservation challenges of long‐lived animal species necessitate long‐term assessments of trophic ecology. The use of dietary proxies, such as ratios of naturally occurring stable isotopes in animal tissues demonstrating progressive growth, has shown considerable promise to reconstruct trophic histories of long‐lived organisms experiencing environmental change. Here, we combine innovative radiocarbon scale‐ageing techniques with stable isotope analysis of carbon and nitrogen from cross sections of scale to reconstruct the trophic ecology of Australian lungfish (Neoceratodus forsteri) across its remaining global distribution. Over a 65‐year period, we found pronounced temporal shifts in the δ13C and δ15N isotopic ratios of lungfish that coincided with a period of hydrological modification by dams and land‐use intensification associated with agriculture and livestock grazing. In the Brisbane and Burnett Rivers, whose hydrology is substantially regulated by large dams, lungfish showed consistent trends of δ13C depletion and δ15N enrichment over time. This may indicate anthropogenic changes in background isotopic levels of basal energy sources and/or that additional seston exported downstream from impoundments represent a carbon source that was previously unavailable, thus shifting lungfish diet from benthic‐dominated primary production typical of unmodified river systems, to pelagic carbon sources. By contrast, δ13C ratios of lungfish in the unregulated Mary River were more stable through time, whereas δ15N ratios increased during a period of dairy industry expansion and increased application of nitrogen fertilization and then subsequently decreased at the same time that rates of pasture development declined and nutrient inputs presumably decreased. In conclusion, we provide evidence for human‐caused alterations in background isotopic levels and potential changes in availability of benthic versus pelagic energy resources supporting Australian lungfish and demonstrate how detectable trophic signals in long‐lived fish scales can reveal long‐term anthropogenic changes in riverine ecosystems.
    View less >
    Journal Title
    River Research and Applications
    DOI
    https://doi.org/10.1002/rra.3369
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Environmental Science and Management
    Ecology
    Environmental Engineering
    Publication URI
    http://hdl.handle.net/10072/382880
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander