• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An ecological status indicator for all time: Are AMBI and M-AMBI effective indicators of change in deep time?

    Author(s)
    Caswell, Bryony A
    Frid, Chris LJ
    Borja, Angel
    Griffith University Author(s)
    Caswell, Bryony A.
    Frid, Chris L.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Increasingly environmental management seeks to limit the impacts of human activities on ecosystems relative to some ‘reference’ condition, which is often the presumed pre-impacted state, however such information is limited. We explore how marine ecosystems in deep time (Late Jurassic) are characterised by AZTI's Marine Biotic Index (AMBI), and how the indices responded to natural perturbations. AMBI is widely used to detect the impacts of human disturbance and to establish management targets, and this study is the first application of these indices to a fossil fauna. Our results show AMBI detected changes in past seafloor ...
    View more >
    Increasingly environmental management seeks to limit the impacts of human activities on ecosystems relative to some ‘reference’ condition, which is often the presumed pre-impacted state, however such information is limited. We explore how marine ecosystems in deep time (Late Jurassic) are characterised by AZTI's Marine Biotic Index (AMBI), and how the indices responded to natural perturbations. AMBI is widely used to detect the impacts of human disturbance and to establish management targets, and this study is the first application of these indices to a fossil fauna. Our results show AMBI detected changes in past seafloor communities (well-preserved fossil deposits) that underwent regional deoxygenation in a manner analogous to those experiencing two decades of organic pollution. These findings highlight the potential for palaeoecological data to contribute to reconstructions of pre-human marine ecosystems, and hence provide information to policy makers and regulators with greater temporal context on the nature of ‘pristine’ marine ecosystems.
    View less >
    Journal Title
    MARINE POLLUTION BULLETIN
    Volume
    140
    DOI
    https://doi.org/10.1016/j.marpolbul.2019.01.068
    Subject
    Marine and estuarine ecology (incl. marine ichthyology)
    Biological oceanography
    Publication URI
    http://hdl.handle.net/10072/382984
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander