Influence of dispersion distribution on the propagation and compression of self-similar optical beam

View/ Open
Author(s)
Zhang, Qiaofen
Li, Huaizhong
Wu, Liming
Gao, Jian
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
The influence of different dispersion-distribution in dispersion-decreasing optical fiber with normal group-velocity dispersion (ND-DDF) on the generation and compression of self-similar optical beam is investigated in this paper. The split-step Fourier numerical method is adopted and the amplitude of the pulses’ envelope under different distributed dispersion is determined numerically. The generation and compression of the self-similar optical beam are simulated and analyzed based on the perspective of chirp feature. The result shows that chirp nonlinear region and chirp linearity level in different dispersion distribution ...
View more >The influence of different dispersion-distribution in dispersion-decreasing optical fiber with normal group-velocity dispersion (ND-DDF) on the generation and compression of self-similar optical beam is investigated in this paper. The split-step Fourier numerical method is adopted and the amplitude of the pulses’ envelope under different distributed dispersion is determined numerically. The generation and compression of the self-similar optical beam are simulated and analyzed based on the perspective of chirp feature. The result shows that chirp nonlinear region and chirp linearity level in different dispersion distribution fiber affect the generation and compression of the self-similar optical beam significantly. The quality of obtained self-similar and compressed optical beam in different tapered fiber increases in order of: cosinoidally tapered DDF, linearly tapered DDF, exponentially tapered DDF and hyperbolically tapered DDF, from the lowest to the highest.
View less >
View more >The influence of different dispersion-distribution in dispersion-decreasing optical fiber with normal group-velocity dispersion (ND-DDF) on the generation and compression of self-similar optical beam is investigated in this paper. The split-step Fourier numerical method is adopted and the amplitude of the pulses’ envelope under different distributed dispersion is determined numerically. The generation and compression of the self-similar optical beam are simulated and analyzed based on the perspective of chirp feature. The result shows that chirp nonlinear region and chirp linearity level in different dispersion distribution fiber affect the generation and compression of the self-similar optical beam significantly. The quality of obtained self-similar and compressed optical beam in different tapered fiber increases in order of: cosinoidally tapered DDF, linearly tapered DDF, exponentially tapered DDF and hyperbolically tapered DDF, from the lowest to the highest.
View less >
Journal Title
EUROPEAN PHYSICAL JOURNAL D
Volume
73
Issue
2
Copyright Statement
© 2019 EDP Sciences. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. The original publication is available at epjd.edpsciences.org/
Subject
Physical sciences