• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Wolbachia infection may improve learning and memory capacity of Drosophila by altering host gene expression through microRNA

    Thumbnail
    View/Open
    Brownlie162168.pdf (288.2Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Bi, Jie
    Zheng, Ya
    Wang, Rui-Fang
    Ai, Hui
    Haynes, Paula R
    Brownlie, Jeremy C
    Yu, Xiao-Qiang
    Wang, Yu-Feng
    Griffith University Author(s)
    Brownlie, Jeremy
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Wolbachia are endosymbiotic bacteria present in a wide range of invertebrates. Although their dramatic effects on host reproductive biology have been well studied, little is known about the effects of Wolbachia on the learning and memory capacity (LMC) of hosts, despite their distribution in the host nervous system, including brain. In this study, we found that Wolbachia infection significantly enhanced LMC in both Drosophila melanogaster and D. simulans. Expression of LMC-related genes was significantly increased in the head of D. melanogaster infected with the wMel strain, and among these genes, crebA was up-regulated the ...
    View more >
    Wolbachia are endosymbiotic bacteria present in a wide range of invertebrates. Although their dramatic effects on host reproductive biology have been well studied, little is known about the effects of Wolbachia on the learning and memory capacity (LMC) of hosts, despite their distribution in the host nervous system, including brain. In this study, we found that Wolbachia infection significantly enhanced LMC in both Drosophila melanogaster and D. simulans. Expression of LMC-related genes was significantly increased in the head of D. melanogaster infected with the wMel strain, and among these genes, crebA was up-regulated the most. Knockdown of crebA in Wolbachia-infected flies significantly decreased LMC, while overexpression of crebA in Wolbachia-free flies significantly enhanced the LMC of flies. More importantly, a microRNA (miRNA), dme-miR-92b, was identified to be complementary to the 3’UTR of crebA. Wolbachia infection was correlated with reduced expression of dme-miR-92b in D. melanogaster, and dme-miR-92b negatively regulated crebA through binding to its 3’UTR region. Overexpression of dme-miR-92b in Wolbachia-infected flies by microinjection of agomirs caused a significant decrease in crebA expression and LMC, while inhibition of dme-miR-92b in Wolbachia-free flies by microinjection of antagomirs resulted in a significant increase in crebA expression and LMC. These results suggest that Wolbachia may improve LMC in Drosophila by altering host gene expression through a miRNA-target pathway. Our findings help better understand the host-endosymbiont interactions and, in particular, the impact of Wolbachia on cognitive processes in invertebrate hosts.
    View less >
    Journal Title
    INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY
    Volume
    106
    DOI
    https://doi.org/10.1016/j.ibmb.2018.11.007
    Copyright Statement
    © 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Medicinal and biomolecular chemistry
    Zoology
    Publication URI
    http://hdl.handle.net/10072/383115
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander