• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effects of soil-pile interaction on the response of bridge pier to barge collision using energy distribution method

    Author(s)
    Gholipour, Gholamreza
    Zhang, Chunwei
    Li, Miao
    Griffith University Author(s)
    Li, Miao
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    In this paper, the effects of soil–structure interaction (SSI) on the response of a girder bridge pier is evaluated by assessing the energy distributions in the barge–pier collision system. The finite-element models of two example piers of St. George Island Causeway Bridge, which have different structural and geometrical characteristics, are developed in LS-DYNA software to simulate the barge–pier collision scenarios. By comparing the energy distribution results among the barge and pier components, it is obtained that barge bow component has greater value of the internal energy contribution than pier components in the barge ...
    View more >
    In this paper, the effects of soil–structure interaction (SSI) on the response of a girder bridge pier is evaluated by assessing the energy distributions in the barge–pier collision system. The finite-element models of two example piers of St. George Island Causeway Bridge, which have different structural and geometrical characteristics, are developed in LS-DYNA software to simulate the barge–pier collision scenarios. By comparing the energy distribution results among the barge and pier components, it is obtained that barge bow component has greater value of the internal energy contribution than pier components in the barge collision with more stiff pier. While, in the barge collision with more flexible pier, the pier components including the pier structure, piles and SSI have more internal energy contributions than the barge component. In addition, From the comparison of energy absorbed by the pier structure between the cases with and without SSI, it is found that the effect of the substructure and its relevant SSI on the response of the more flexible pier affected by the produced large deformations and relative displacements of the pier substructure, is more than that of stiff pier which displaces with semi-rigid and global deflections.
    View less >
    Journal Title
    STRUCTURE AND INFRASTRUCTURE ENGINEERING
    Volume
    14
    Issue
    11
    DOI
    https://doi.org/10.1080/15732479.2018.1450427
    Subject
    Civil engineering
    Publication URI
    http://hdl.handle.net/10072/383177
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander