The Flux and Emission of Dimethylsulfide From the Great Barrier Reef Region and Potential Influence on the Climate of NE Australia

View/ Open
Author(s)
Jones, Graham
Curran, Mark
Deschaseaux, Elisabeth
Omori, Yuko
Tanimoto, Hiroshi
Swan, Hilton
Eyre, Bradley
Ivey, John
McParland, Erin
Gabric, Albert
Cropp, Roger
Year published
2018
Metadata
Show full item recordAbstract
Concentrations of dimethylsulfoniopropionate (DMSP), dimethylsulfide (DMS), and DMS flux are reported for the Great Barrier Reef (GBR), Great Barrier Reef Lagoon (GBRL), and Coral Sea. Generally higher concentrations of dimethylsulfoniopropionate and DMS occurred in coral reef waters, compared with GBRL concentrations. DMS flux from GBR coral reefs in summer ranged from nondetectable to 153 μmol m−2 d−1 (mean 6.4), while winter fluxes ranged from 0.02 to 15 μmol m−2 d−1 (mean 2.4). No significant seasonal difference in DMS flux occurred for the GBRL. High DMSw concentrations and DMS fluxes periodically occur at coral reefs ...
View more >Concentrations of dimethylsulfoniopropionate (DMSP), dimethylsulfide (DMS), and DMS flux are reported for the Great Barrier Reef (GBR), Great Barrier Reef Lagoon (GBRL), and Coral Sea. Generally higher concentrations of dimethylsulfoniopropionate and DMS occurred in coral reef waters, compared with GBRL concentrations. DMS flux from GBR coral reefs in summer ranged from nondetectable to 153 μmol m−2 d−1 (mean 6.4), while winter fluxes ranged from 0.02 to 15 μmol m−2 d−1 (mean 2.4). No significant seasonal difference in DMS flux occurred for the GBRL. High DMSw concentrations and DMS fluxes periodically occur at coral reefs during very low tides and elevated sea surface temperatures (SSTs). For the GBRL and GBR coral reefs there was a significant correlation between seawater DMSw concentrations and SST (p < 0.001), up to temperatures of 30 °C. During coral bleaching DMS flux from reefs almost completely shuts down when SSTs are >30 °C. The GBRL and associated coral reefs emit 439 and 32 MmolS per year, respectively. Cyclones on average produce 170 MmolS to the GBR atmosphere in summer. This amount can markedly increase during severe cyclones such as severe tropical Cyclone Debbie in March 2017. Overall, the annual DMS emission estimate from the GBRL and coral reefs in the GBR is 0.64 GmolS, with cyclones contributing 27% or greater of the annual emission estimate, depending on the cyclone intensity. Oxidation of atmospheric DMS can potentially affect solar radiation, SSTs, low‐level cloud cover, and rainfall causing cooling and warming of the climate in the GBR region as recent modeling predicts.
View less >
View more >Concentrations of dimethylsulfoniopropionate (DMSP), dimethylsulfide (DMS), and DMS flux are reported for the Great Barrier Reef (GBR), Great Barrier Reef Lagoon (GBRL), and Coral Sea. Generally higher concentrations of dimethylsulfoniopropionate and DMS occurred in coral reef waters, compared with GBRL concentrations. DMS flux from GBR coral reefs in summer ranged from nondetectable to 153 μmol m−2 d−1 (mean 6.4), while winter fluxes ranged from 0.02 to 15 μmol m−2 d−1 (mean 2.4). No significant seasonal difference in DMS flux occurred for the GBRL. High DMSw concentrations and DMS fluxes periodically occur at coral reefs during very low tides and elevated sea surface temperatures (SSTs). For the GBRL and GBR coral reefs there was a significant correlation between seawater DMSw concentrations and SST (p < 0.001), up to temperatures of 30 °C. During coral bleaching DMS flux from reefs almost completely shuts down when SSTs are >30 °C. The GBRL and associated coral reefs emit 439 and 32 MmolS per year, respectively. Cyclones on average produce 170 MmolS to the GBR atmosphere in summer. This amount can markedly increase during severe cyclones such as severe tropical Cyclone Debbie in March 2017. Overall, the annual DMS emission estimate from the GBRL and coral reefs in the GBR is 0.64 GmolS, with cyclones contributing 27% or greater of the annual emission estimate, depending on the cyclone intensity. Oxidation of atmospheric DMS can potentially affect solar radiation, SSTs, low‐level cloud cover, and rainfall causing cooling and warming of the climate in the GBR region as recent modeling predicts.
View less >
Journal Title
Journal of Geophysical Research: Atmospheres
Volume
123
Issue
24
Copyright Statement
© 2018 American Geophysical Union. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Atmospheric Sciences
Physical Geography and Environmental Geoscience