• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An accelerated two-dimensional unsteady heat conduction calculation procedure for thermal conductivity measurement by the transient short-hot-wire method

    Author(s)
    Woodfield, PL
    Fukai, J
    Fujii, M
    Takata, Y
    Griffith University Author(s)
    Woodfield, Peter L.
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    A fast and accurate procedure is proposed for solution of the twodimensional unsteady heat conduction equation used in the transient short-hot-wire method for measuring thermal conductivity. Finite Fourier transforms are applied analytically in the wire-axis direction to produce a set of one-dimensional ordinary differential equations. After discretization by the finite-volume method in the radial direction, each one-dimensional algebraic equation is solved directly using the tridiagonal matrix algorithm prior to application of the inverse Fourier transform. The numerical procedure is shown to be very accurate through ...
    View more >
    A fast and accurate procedure is proposed for solution of the twodimensional unsteady heat conduction equation used in the transient short-hot-wire method for measuring thermal conductivity. Finite Fourier transforms are applied analytically in the wire-axis direction to produce a set of one-dimensional ordinary differential equations. After discretization by the finite-volume method in the radial direction, each one-dimensional algebraic equation is solved directly using the tridiagonal matrix algorithm prior to application of the inverse Fourier transform. The numerical procedure is shown to be very accurate through comparison with an analytical solution, and it is found to be an order of magnitude faster than the usual numerical solution.
    View less >
    Journal Title
    International Journal of Thermophysics
    Volume
    30
    Issue
    3
    DOI
    https://doi.org/10.1007/s10765-009-0583-5
    Subject
    Classical physics
    Physical chemistry
    Chemical engineering
    Mechanical engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/38325
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander