• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A Closed Device to Generate Vortex Flow Using PZT

    Thumbnail
    View/Open
    Dau165443.pdf (1.013Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Bui, PN
    Dinh, TX
    Phan, HT
    Tran, CD
    Bui, TT
    Dau, VT
    Griffith University Author(s)
    Dau, Van
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    This paper reports for the first time a millimeter scale fully packaged device which generates a vortex flow of high velocity. The flow which is simply actuated by a PZT diaphragm circulates with a higher velocity after each actuating circle to form a vortex in a desired chamber. The design of such device is firstly conducted by a numerical analysis using OpenFOAM. Several numerical results are considered as the base of our experiment where a flow vortex is observed by a high speed camera. The present device is potential in various applications related to the inertial sensing, fluidic amplifier and micro/nano particle trapping ...
    View more >
    This paper reports for the first time a millimeter scale fully packaged device which generates a vortex flow of high velocity. The flow which is simply actuated by a PZT diaphragm circulates with a higher velocity after each actuating circle to form a vortex in a desired chamber. The design of such device is firstly conducted by a numerical analysis using OpenFOAM. Several numerical results are considered as the base of our experiment where a flow vortex is observed by a high speed camera. The present device is potential in various applications related to the inertial sensing, fluidic amplifier and micro/nano particle trapping and mixing.
    View less >
    Conference Title
    NEMS 2018 - 13th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems
    DOI
    https://doi.org/10.1109/NEMS.2018.8556981
    Copyright Statement
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Nanoelectromechanical systems
    Publication URI
    http://hdl.handle.net/10072/383258
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander