• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Statistical shape modelling versus linear scaling: Effects on predictions of hip joint centre location and muscle moment arms in people with hip osteoarthritis

    Thumbnail
    View/Open
    Killen167119.pdf (955.0Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Bahl, Jasvir S
    Zhang, Ju
    Killen, Bryce A
    Taylor, Mark
    Solomon, Lucian B
    Arnold, John B
    Lloyd, David G
    Besier, Thor F
    Thewlis, Dominic
    Griffith University Author(s)
    Lloyd, David
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Marker-based dynamic functional or regression methods are used to compute joint centre locations that can be used to improve linear scaling of the pelvis in musculoskeletal models, although large errors have been reported using these methods. This study aimed to investigate if statistical shape models could improve prediction of the hip joint centre (HJC) location. The inclusion of complete pelvis imaging data from computed tomography (CT) was also explored to determine if free-form deformation techniques could further improve HJC estimates. Mean Euclidean distance errors were calculated between HJC from CT and estimates ...
    View more >
    Marker-based dynamic functional or regression methods are used to compute joint centre locations that can be used to improve linear scaling of the pelvis in musculoskeletal models, although large errors have been reported using these methods. This study aimed to investigate if statistical shape models could improve prediction of the hip joint centre (HJC) location. The inclusion of complete pelvis imaging data from computed tomography (CT) was also explored to determine if free-form deformation techniques could further improve HJC estimates. Mean Euclidean distance errors were calculated between HJC from CT and estimates from shape modelling methods, and functional- and regression-based linear scaling approaches. The HJC of a generic musculoskeletal model was also perturbed to compute the root-mean squared error (RMSE) of the hip muscle moment arms between the reference HJC obtained from CT and the different scaling methods. Shape modelling without medical imaging data significantly reduced HJC location error estimates (11.4 ± 3.3 mm) compared to functional (36.9 ± 17.5 mm, p = <0.001) and regression (31.2 ± 15 mm, p = <0.001) methods. The addition of complete pelvis imaging data to the shape modelling workflow further reduced HJC error estimates compared to no imaging (6.6 ± 3.1 mm, p = 0.002). Average RMSE were greatest for the hip flexor and extensor muscle groups using the functional (16.71 mm and 8.87 mm respectively) and regression methods (16.15 mm and 9.97 mm respectively). The effects on moment-arms were less substantial for the shape modelling methods, ranging from 0.05 to 3.2 mm. Shape modelling methods improved HJC location and muscle moment-arm estimates compared to linear scaling of musculoskeletal models in patients with hip osteoarthritis.
    View less >
    Journal Title
    Journal of Biomechanics
    Volume
    85
    DOI
    https://doi.org/10.1016/j.jbiomech.2019.01.031
    Copyright Statement
    © 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Biomedical engineering
    Mechanical engineering
    Sports science and exercise
    Publication URI
    http://hdl.handle.net/10072/383298
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander