• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Wave-induced seabed residual response and liquefaction around a mono-pile foundation with various embedded depth

    Author(s)
    Sui, Titi
    Zhang, Chi
    Jeng, Dong-sheng
    Guo, Yakun
    Zheng, Jinhai
    Zhang, Wei
    Shi, Jian
    Griffith University Author(s)
    Jeng, Dong-Sheng
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Wave-induced seabed instability caused by the residual liquefaction of seabed may threaten the safety of an offshore foundation. Most previous studies have focused on the structure that sits on the seabed surface (e.g., breakwater and pipeline), a few studies investigate the structure embedded into the seabed (e.g. a mono-pile). In this study, by considering the inertial terms of pore fluid and soil skeleton, a three-dimensional (3D) integrated model for the wave-induced seabed residual response around a mono-pile is developed. The model is validated with five experimental tests available in the literature. The proposed model ...
    View more >
    Wave-induced seabed instability caused by the residual liquefaction of seabed may threaten the safety of an offshore foundation. Most previous studies have focused on the structure that sits on the seabed surface (e.g., breakwater and pipeline), a few studies investigate the structure embedded into the seabed (e.g. a mono-pile). In this study, by considering the inertial terms of pore fluid and soil skeleton, a three-dimensional (3D) integrated model for the wave-induced seabed residual response around a mono-pile is developed. The model is validated with five experimental tests available in the literature. The proposed model is then applied to investigate the spatial and temporal pattern of pore pressure accumulation as well as the 3D liquefaction zone around a mono-pile. The numerical simulation shows that the residual pore pressure in front of a pile is larger than that at the rear, and the seabed residual response would be underestimated if the inertial terms of pore fluid and soil skeleton are neglected. The result also shows that the maximum residual liquefaction depth will increase with the increase of the embedded depth of the pile.
    View less >
    Journal Title
    OCEAN ENGINEERING
    Volume
    173
    DOI
    https://doi.org/10.1016/j.oceaneng.2018.12.055
    Subject
    Oceanography
    Civil engineering
    Maritime engineering
    Publication URI
    http://hdl.handle.net/10072/383387
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander