Show simple item record

dc.contributor.authorAdamou, M
dc.contributor.authorAntoniou, G
dc.contributor.authorGreasidou, E
dc.contributor.authorLagani, V
dc.contributor.authorCharonyktakis, P
dc.contributor.authorTsamardinos, I
dc.contributor.authorDoyle, M
dc.date.accessioned2019-06-19T13:05:34Z
dc.date.available2019-06-19T13:05:34Z
dc.date.issued2019
dc.identifier.issn0227-5910
dc.identifier.doi10.1027/0227-5910/a000561
dc.identifier.urihttp://hdl.handle.net/10072/383444
dc.description.abstractBackground: Suicide has been considered an important public health issue for years and is one of the main causes of death worldwide. Despite prevention strategies being applied, the rate of suicide has not changed substantially over the past decades. Suicide risk has proven extremely difficult to assess for medical specialists, and traditional methodologies deployed have been ineffective. Advances in machine learning make it possible to attempt to predict suicide with the analysis of relevant data aiming to inform clinical practice. Aims: We aimed to (a) test our artificial intelligence based, referral-centric methodology in the context of the National Health Service (NHS), (b) determine whether statistically relevant results can be derived from data related to previous suicides, and (c) develop ideas for various exploitation strategies. Method: The analysis used data of patients who died by suicide in the period 2013-2016 including both structured data and free-text medical notes, necessitating the deployment of state-of-the-art machine learning and text mining methods. Limitations: Sample size is a limiting factor for this study, along with the absence of non-suicide cases. Specific analytical solutions were adopted for addressing both issues. Results and Conclusion: The results of this pilot study indicate that machine learning shows promise for predicting within a specified period which people are most at risk of taking their own life at the time of referral to a mental health service.
dc.description.peerreviewedYes
dc.languageeng
dc.publisherHogrefe
dc.relation.ispartofjournalCrisis
dc.subject.fieldofresearchCommunication and Media Studies
dc.subject.fieldofresearchPsychology
dc.subject.fieldofresearchCommunication and Media Studies
dc.subject.fieldofresearchcode2001
dc.subject.fieldofresearchcode1701
dc.subject.fieldofresearchcode2001
dc.titleToward Automatic Risk Assessment to Support Suicide Prevention
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.description.notepublicThis publication has been entered into Griffith Research Online as an Advanced Online Version.
gro.hasfulltextNo Full Text
gro.griffith.authorAntoniou, Grigorios


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record