• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Identification and Characterization of a Phase-Variable Element That Regulates the Autotransporter UpaE in Uropathogenic Escherichia coli

    Thumbnail
    View/Open
    GOH171232.pdf (1.846Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Battaglioli, EJ
    Goh, KGK
    Atruktsang, TS
    Schwartz, K
    Schembri, MA
    Welch, RA
    Griffith University Author(s)
    Goh, Kelvin
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Uropathogenic Escherichia coli (UPEC) is the most common etiologic agent of uncomplicated urinary tract infection (UTI). An important mechanism of gene regulation in UPEC is phase variation that involves inversion of a promoter-containing DNA element via enzymatic activity of tyrosine recombinases, resulting in biphasic, ON or OFF expression of target genes. The UPEC reference strain CFT073 has five tyrosine site-specific recombinases that function at two previously characterized promoter inversion systems, fimS and hyxS. Three of the five recombinases are located proximally to their cognate target elements, which is typical ...
    View more >
    Uropathogenic Escherichia coli (UPEC) is the most common etiologic agent of uncomplicated urinary tract infection (UTI). An important mechanism of gene regulation in UPEC is phase variation that involves inversion of a promoter-containing DNA element via enzymatic activity of tyrosine recombinases, resulting in biphasic, ON or OFF expression of target genes. The UPEC reference strain CFT073 has five tyrosine site-specific recombinases that function at two previously characterized promoter inversion systems, fimS and hyxS. Three of the five recombinases are located proximally to their cognate target elements, which is typical of promoter inversion systems. The genes for the other two recombinases, IpuA and IpuB, are located distal from these sites. Here, we identified and characterized a third phase-variable invertible element in CFT073, ipuS, located proximal to ipuA and ipuB. The inversion of ipuS is catalyzed by four of the five CFT073 recombinases. Orientation of the element drives transcription of a two-gene operon containing ipuR, a predicted LuxR-type regulator, and upaE, a predicted autotransporter. We show that the predicted autotransporter UpaE is surface located and facilitates biofilm formation as well as adhesion to extracellular matrix proteins in a K-12 recombinant background. Consistent with this phenotype, the ipuS ON condition in CFT073 results in defective swimming motility, increased adherence to human kidney epithelial cells, and a positive competitive kidney colonization advantage in experimental mouse UTIs. Overall, the identification of a third phase switch in UPEC that is regulated by a shared set of recombinases describes a complex phase-variable virulence network in UPEC.
    View less >
    Journal Title
    MBIO
    Volume
    9
    Issue
    4
    DOI
    https://doi.org/10.1128/mBio.01360-18
    Copyright Statement
    © 2018 Battaglioli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. Address correspondence to R. A. Welch, rawelch@wisc.edu. This article is a direct contribution from a Fellow of the American Academy of Microbiology. Solicited external reviewers: Harry Mobley, University of Michigan; Matthew Mulvey, University of Utah School of Medicine.
    Subject
    Microbiology
    Publication URI
    http://hdl.handle.net/10072/383451
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander