• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Load Transfer and Collapse Resistance of RC Flat Plates under Interior Column Removal Scenario

    Thumbnail
    View/Open
    Gilbert171243.pdf (378.4Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Xue, Huizhong
    Gilbert, Benoit P
    Guan, Hong
    Lu, Xinzheng
    Li, Yi
    Ma, Fuhao
    Tian, Ying
    Griffith University Author(s)
    Guan, Hong
    Gilbert, Benoit
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Reinforced concrete (RC) flat-plate structures are vulnerable to punching shear failure at their slab-column connections, potentially leading to a catastrophic progressive collapse. In practice, the slab-column connection above an interior column, removed due to abnormal loads, may be subjected to a concentrated downward force because of the absence of the supporting column and further being pushed as a result of different live load intensities on individual stories. This force is different from the full design load that the column withstands in normal situations and, combined with the gravity load acting on the slab, may ...
    View more >
    Reinforced concrete (RC) flat-plate structures are vulnerable to punching shear failure at their slab-column connections, potentially leading to a catastrophic progressive collapse. In practice, the slab-column connection above an interior column, removed due to abnormal loads, may be subjected to a concentrated downward force because of the absence of the supporting column and further being pushed as a result of different live load intensities on individual stories. This force is different from the full design load that the column withstands in normal situations and, combined with the gravity load acting on the slab, may cause punching shear failure at the interior slab-column connection. This will further trigger failure propagation to the surrounding slab-column connections. This paper presents the experimental tests performed on two identical large-scale 2×2-bay RC flat-plate specimens under an interior column removal scenario. A 5-kPa uniformly distributed load was applied first to the slab followed by an incremental concentrated force imposed on the slab-column connection above the removed interior column. The complete collapse-resistant behavior and load redistribution pattern of the specimens were investigated and are reported herein. Results show that more than 90% of the applied concentrated force is solely distributed to the four nearest adjacent columns. Three load-carrying mechanism phases, in the form of flexural, tensile membrane, and a combination of one-way catenary and dowel actions can be distinguished in resisting the applied concentrated load.
    View less >
    Journal Title
    JOURNAL OF STRUCTURAL ENGINEERING
    Volume
    144
    Issue
    7
    DOI
    https://doi.org/10.1061/(ASCE)ST.1943-541X.0002090
    Copyright Statement
    © 2018 American Society of Civil Engineers (ASCE). This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Civil engineering
    Materials engineering
    Mechanical engineering
    Publication URI
    http://hdl.handle.net/10072/383457
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander