• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation in the Conversion of Biomass Molecule by the Ru-1/mpg-C3N4 Catalyst

    Author(s)
    Tian, Shubo
    Wang, Ziyun
    Gong, Wanbing
    Chen, Wenxing
    Feng, Quanchen
    Wu, Qi
    Chen, Chun
    Chen, Chen
    Peng, Qing
    Gu, Lin
    Zhao, Huijun
    Hu, P
    Wang, Dingsheng
    Li, Yadong
    Griffith University Author(s)
    Zhao, Huijun
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Hydrogenation and hydrodeoxygenation are significant and distinct approaches for the conversion of biomass and biomass-derived oxygenated chemicals into high value-added chemicals and fuels. However, it remains a great challenge to synthesize catalysts that simultaneously possess excellent hydrogenation and hydrodeoxygenation performance. Herein, we report a catalyst made of isolated single-atom Ru supported on mesoporous graphitic carbon nitride (Ru1/mpg-C3N4), fabricated by a wet impregnation method. The as-prepared Ru1/mpg-C3N4 catalyst shows excellent hydrogenation and hydrodeoxygenation performance. First-principles ...
    View more >
    Hydrogenation and hydrodeoxygenation are significant and distinct approaches for the conversion of biomass and biomass-derived oxygenated chemicals into high value-added chemicals and fuels. However, it remains a great challenge to synthesize catalysts that simultaneously possess excellent hydrogenation and hydrodeoxygenation performance. Herein, we report a catalyst made of isolated single-atom Ru supported on mesoporous graphitic carbon nitride (Ru1/mpg-C3N4), fabricated by a wet impregnation method. The as-prepared Ru1/mpg-C3N4 catalyst shows excellent hydrogenation and hydrodeoxygenation performance. First-principles calculations reveal that the Ru atom is mobilized, and the active site is induced by adsorption of the reactants. A systematic reaction mechanism is proposed, suggesting that vanillyl alcohol is the deoxygenation prohibited product, while 2-methoxy-p-cresol is the deoxygenation allowed product. Thus, the excellent selectivity for the hydrogenation or hydrodeoxygenation of vanillin at different temperatures results from switching between the two types of products.
    View less >
    Journal Title
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
    Volume
    140
    Issue
    36
    DOI
    https://doi.org/10.1021/jacs.8b06029
    Subject
    Chemical sciences
    Publication URI
    http://hdl.handle.net/10072/383460
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander