• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Lithium-Catalyzed Dehydrogenation of Ammonia Borane within Mesoporous Carbon Framework for Chemical Hydrogen Storage

    Author(s)
    Li, Li
    Yao, Xiongdong
    Sun, Chenghua
    Du, Aijun
    Cheng, Lina
    Zhu, Zhonghua
    Yu, Chengzhong
    Zou, Jin
    Smith, Sean C
    Wang, Ping
    Cheng, Hui-Ming
    Frost, Ray L
    Lu, Gao Qing Max
    Griffith University Author(s)
    Yao, Xiangdong
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    Ammonia borane (AB) has attracted tremendous interest for on-board hydrogen storage due to its low molecular weight and high gravimetric hydrogen capacity below a moderate temperature. However, the slow kinetics, irreversibility, and formation of volatile materials (trace borazine and ammonia) limit its practical application. In this paper, a new catalytic strategy involved lithium (U) catalysis and nanostructure confinement in mesoporous carbon (CMK-3) for the thermal decomposition of AB is developed. AB loaded on the 5% Li/CMK-3 framework releases similar to 7 wt% of hydrogen at a very low temperature (around 60 degrees ...
    View more >
    Ammonia borane (AB) has attracted tremendous interest for on-board hydrogen storage due to its low molecular weight and high gravimetric hydrogen capacity below a moderate temperature. However, the slow kinetics, irreversibility, and formation of volatile materials (trace borazine and ammonia) limit its practical application. In this paper, a new catalytic strategy involved lithium (U) catalysis and nanostructure confinement in mesoporous carbon (CMK-3) for the thermal decomposition of AB is developed. AB loaded on the 5% Li/CMK-3 framework releases similar to 7 wt% of hydrogen at a very low temperature (around 60 degrees C) and entirely suppresses borazine and ammonia emissions that am harmful for proton exchange membrane fuel cells. The possible mechanism for enhanced hydrogen release via catalyzed thermal decomposition of AB is discussed.
    View less >
    Journal Title
    Advanced Functional Materials
    Volume
    19
    Issue
    2
    DOI
    https://doi.org/10.1002/adfm.200801111
    Subject
    Physical sciences
    Chemical sciences
    Solid state chemistry
    Physical properties of materials
    Engineering
    Publication URI
    http://hdl.handle.net/10072/38355
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander