Show simple item record

dc.contributor.authorLi, Guodong
dc.contributor.authorZhao, Shenlong
dc.contributor.authorZhang, Yin
dc.contributor.authorTang, Zhiyong
dc.date.accessioned2019-07-04T12:36:39Z
dc.date.available2019-07-04T12:36:39Z
dc.date.issued2018
dc.identifier.issn0935-9648
dc.identifier.doi10.1002/adma.201800702
dc.identifier.urihttp://hdl.handle.net/10072/383647
dc.description.abstractBeyond conventional porous materials, metal–organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics of catalytically active nanoparticles (NPs) confined into the cavities/channels of MOFs or surrounded by MOFs. The advantages of adopting MOFs as the encapsulating matrix are multifold: uniform and long‐range ordered cavities can effectively promote the mass transfer and diffusion of substrates and products, while the diverse metal nodes and tunable organic linkers may enable outstanding synergy functions with the encapsulated active NPs. Herein, some key issues related to MOFs for catalysis are discussed. Then, state‐of‐the art progress in the encapsulation of catalytically active NPs by MOFs as well as their synergy functions for enhanced catalytic performance in the fields of thermo‐, photo‐, and electrocatalysis are summarized. Notably, encapsulation‐structured nanocatalysts exhibit distinct advantages over conventional supported catalysts, especially in terms of the catalytic selectivity and stability. Finally, challenges and future developments in MOF‐based encapsulation‐structured nanocatalysts are proposed. The aim is to deliver better insight into the design of well‐defined nanocatalysts with atomically accurate structures and high performance in challenging reactions.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherWILEY-V C H VERLAG GMBH
dc.relation.ispartofissue51
dc.relation.ispartofjournalADVANCED MATERIALS
dc.relation.ispartofvolume30
dc.subject.fieldofresearchPhysical sciences
dc.subject.fieldofresearchChemical sciences
dc.subject.fieldofresearchEngineering
dc.subject.fieldofresearchcode51
dc.subject.fieldofresearchcode34
dc.subject.fieldofresearchcode40
dc.titleMetal-Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.hasfulltextNo Full Text
gro.griffith.authorTang, Zhiyong


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record