• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Calcium and Ca2+/Calmodulin-dependent kinase II as targets for helminth parasite control.

    Author(s)
    Nawaratna, Sujeevi SK
    You, Hong
    Jones, Malcolm K
    McManus, Donald P
    Gobert, Geoffrey N
    Griffith University Author(s)
    Nawaratna, Sujeevi S.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    In eukaryotes, effective calcium homeostasis is critical for many key biological processes. There is an added level of complexity in parasites, particularly multicellular helminth worms, which modulate calcium levels while inhabiting the host microenvironment. Parasites ensure efficient calcium homeostasis through gene products, such as the calmodulin-dependent kinases (CaMK), the main focus of this review. The importance of CaMK is becoming increasingly apparent from recent functional studies of helminth and protozoan parasites. Investigations on the molecular regulation of calcium and the role of CaMK are important for ...
    View more >
    In eukaryotes, effective calcium homeostasis is critical for many key biological processes. There is an added level of complexity in parasites, particularly multicellular helminth worms, which modulate calcium levels while inhabiting the host microenvironment. Parasites ensure efficient calcium homeostasis through gene products, such as the calmodulin-dependent kinases (CaMK), the main focus of this review. The importance of CaMK is becoming increasingly apparent from recent functional studies of helminth and protozoan parasites. Investigations on the molecular regulation of calcium and the role of CaMK are important for both supplementing current drug regimens and finding new antiparasitic compounds. Whereas calcium regulators, including CaMK, are well characterised in mammalian systems, knowledge of their functional properties in parasites is increasing but is still in its infancy.
    View less >
    Journal Title
    Biochem Soc Trans
    Volume
    46
    Issue
    6
    DOI
    https://doi.org/10.1042/BST20180480
    Subject
    Biochemistry and Cell Biology
    Medical Biochemistry and Metabolomics
    Publication URI
    http://hdl.handle.net/10072/383654
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander