• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Connecting social media data with observed hybrid data for environment monitoring

    Author(s)
    Chen, J
    Wang, S
    Stantic, B
    Griffith University Author(s)
    Stantic, Bela
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Environmental monitoring has been regarded as one of effective solutions to protect our living places from potential risks. Traditional methods rely on periodically recording assessments of observed objects, which results in large amount of hybrid data sets. Additionally public opinions regarding certain topics can be extracted from social media and used as another source of descriptive data. In this work, we investigate how to connect and process the public opinions from social media with hybrid observation records. Particularly, we study Twitter posts from designated region with respect to specific topics, such as marine ...
    View more >
    Environmental monitoring has been regarded as one of effective solutions to protect our living places from potential risks. Traditional methods rely on periodically recording assessments of observed objects, which results in large amount of hybrid data sets. Additionally public opinions regarding certain topics can be extracted from social media and used as another source of descriptive data. In this work, we investigate how to connect and process the public opinions from social media with hybrid observation records. Particularly, we study Twitter posts from designated region with respect to specific topics, such as marine environmental activities. Sentiment analysis on tweets is performed to reflect public opinions on the environmental topics. Additionally two hybrid data sets have been considered. To process these data we use Hadoop cluster and utilize NoSql and relational databases to store data distributed across nodes in share nothing architecture. We compare the public sentiments in social media with scientific observations in real time and show that the “citizen science” enhanced with real time analytics can provide avenue to nominatively monitor natural environments. The approach presented in this paper provides an innovative method to monitor environment with the power of social media analysis and distributed computing.
    View less >
    Conference Title
    Studies in Computational Intelligence
    Volume
    737
    DOI
    https://doi.org/10.1007/978-3-319-66379-1_12
    Subject
    Artificial intelligence
    Publication URI
    http://hdl.handle.net/10072/383656
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander