• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Resonance-Enhanced Absorption in Hollow Nanoshell Spheres with Omnidirectional Detection and High Responsivity and Speed

    Author(s)
    Lien, Der-Hsien
    Dong, Zhenghong
    Retamal, Jose Ramon Duran
    Wang, Hsin-Ping
    Wei, Tzu-Chiao
    Wang, Dan
    He, Jr-Hau
    Cui, Yi
    Griffith University Author(s)
    Wang, Dan
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Optical resonance formed inside a nanocavity resonator can trap light within the active region and hence enhance light absorption, effectively boosting device or material performance in applications of solar cells, photodetectors (PDs), and photocatalysts. Complementing conventional circular and spherical structures, a new type of multishelled spherical resonant strategy is presented. Due to the resonance‐enhanced absorption by multiple convex shells, ZnO nanoshell PDs show improved optoelectronic performance and omnidirectional detection of light at different incidence angles and polarization. In addition, the response and ...
    View more >
    Optical resonance formed inside a nanocavity resonator can trap light within the active region and hence enhance light absorption, effectively boosting device or material performance in applications of solar cells, photodetectors (PDs), and photocatalysts. Complementing conventional circular and spherical structures, a new type of multishelled spherical resonant strategy is presented. Due to the resonance‐enhanced absorption by multiple convex shells, ZnO nanoshell PDs show improved optoelectronic performance and omnidirectional detection of light at different incidence angles and polarization. In addition, the response and recovery speeds of these devices are improved (0.8 and 0.7 ms, respectively) up to three orders of magnitude faster than in previous reports because of the existence of junction barriers between the nanoshells. The general design principles behind these hollow ZnO nanoshells pave a new way to improve the performance of sophisticated nanophotonic devices.
    View less >
    Journal Title
    ADVANCED MATERIALS
    Volume
    30
    Issue
    34
    DOI
    https://doi.org/10.1002/adma.201801972
    Subject
    Physical sciences
    Chemical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/383698
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander