• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion

    Author(s)
    Mathew, Biji
    Ravindran, Sriram
    Liu, Xiaorong
    Torres, Leianne
    Chennakesavalu, Mohansrinivas
    Huang, Chun-Chieh
    Feng, Liang
    Zelka, Ruth
    Lopez, Jasmine
    Sharma, Monica
    Roth, Steven
    Griffith University Author(s)
    Ravindran, Ravi
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Retinal ischemia is a major cause of vision loss and impairment and a common underlying mechanism associated with diseases such as glaucoma, diabetic retinopathy, and central retinal artery occlusion. The regenerative capacity of the diseased human retina is limited. Our previous studies have shown the neuroprotective effects of intravitreal injection of mesenchymal stem cells (MSC) and MSC-conditioned medium in retinal ischemia in rats. Based upon the hypothesis that the neuroprotective effects of MSCs and conditioned medium are largely mediated by extracellular vesicles (EVs), MSC derived EVs were tested in an in-vitro ...
    View more >
    Retinal ischemia is a major cause of vision loss and impairment and a common underlying mechanism associated with diseases such as glaucoma, diabetic retinopathy, and central retinal artery occlusion. The regenerative capacity of the diseased human retina is limited. Our previous studies have shown the neuroprotective effects of intravitreal injection of mesenchymal stem cells (MSC) and MSC-conditioned medium in retinal ischemia in rats. Based upon the hypothesis that the neuroprotective effects of MSCs and conditioned medium are largely mediated by extracellular vesicles (EVs), MSC derived EVs were tested in an in-vitro oxygen-glucose deprivation (OGD) model of retinal ischemia. Treatment of R28 retinal cells with MSC-derived EVs significantly reduced cell death and attenuated loss of cell proliferation. Mechanistic studies on the mode of EV endocytosis by retinal cells were performed in vitro. EV endocytosis was dose- and temperature-dependent, saturable, and occurred via cell surface heparin sulfate proteoglycans mediated by the caveolar endocytic pathway. The administration of MSC-EVs into the vitreous humor 24 h after retinal ischemia in a rat model significantly enhanced functional recovery, and decreased neuro-inflammation and apoptosis. EVs were taken up by retinal neurons, retinal ganglion cells, and microglia. They were present in the vitreous humor for four weeks after intravitreal administration, with saturable binding to vitreous humor components. Overall, this study highlights the potential of MSC-EV as biomaterials for neuroprotective and regenerative therapy in retinal disorders.
    View less >
    Journal Title
    BIOMATERIALS
    Volume
    197
    DOI
    https://doi.org/10.1016/j.biomaterials.2019.01.016
    Subject
    Multidisciplinary
    Publication URI
    http://hdl.handle.net/10072/383718
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander