• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Cationic Surfactant-Based Electrolyte Additives for Uniform Lithium Deposition via Lithiophobic Repulsion Mechanisms

    Author(s)
    Dai, Hongliu
    Xi, Kai
    Liu, Xin
    Lai, Chao
    Zhang, Shanqing
    Griffith University Author(s)
    Zhang, Shanqing
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Lithium metal is among the most promising anode materials for high-energy batteries due to its high theoretical capacity and lowest electrochemical potential. However, dendrite formation is a major challenge, which can result in fire and explosion of the batteries. Herein, we report on hexadecyl trimethylammonium chloride (CTAC) as an electrolyte additive that can suppress the growth of lithium dendrites by lithiophobic repulsion mechanisms. During the lithium plating process, cationic surfactant molecules can aggregate around protuberances via electrostatic attraction, forming a nonpolar lithiophobic protective outer layer, ...
    View more >
    Lithium metal is among the most promising anode materials for high-energy batteries due to its high theoretical capacity and lowest electrochemical potential. However, dendrite formation is a major challenge, which can result in fire and explosion of the batteries. Herein, we report on hexadecyl trimethylammonium chloride (CTAC) as an electrolyte additive that can suppress the growth of lithium dendrites by lithiophobic repulsion mechanisms. During the lithium plating process, cationic surfactant molecules can aggregate around protuberances via electrostatic attraction, forming a nonpolar lithiophobic protective outer layer, which drives the deposition of lithium ions to adjacent regions to produce dendrite-free uniform Li deposits. Thus, an excellent cycle of 300 h at 1.0 mA cm–2 and rate performance up to 4 mA cm–2 are available safely in symmetric Li|Li cells. In particular, significantly enhanced cycle and rate performance were achieved when the electrolyte with CTAC additives was used in lithium–sulfur and Li|LiNi0.5Co0.2Mn0.3O2 full cells. The effects of carbon chains, anions of surfactant, and electrostatic repulsion on the deposition of lithium anodes are reported. This work advances research in inhibiting Li dendrite growth with a new electrolyte additive based on cationic surfactants.
    View less >
    Journal Title
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
    Volume
    140
    Issue
    50
    DOI
    https://doi.org/10.1021/jacs.8b08963
    Subject
    Chemical sciences
    Publication URI
    http://hdl.handle.net/10072/383738
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander