• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Experimental study on the progressive collapse behaviour of RC flat plate substructures subjected to corner column removal scenarios

    Thumbnail
    View/Open
    Gilbert192153.pdf (2.834Mb)
    Author(s)
    Ma, Fuhao
    Gilbert, Benoit P
    Guan, Hong
    Xue, Huizhong
    Lu, Xinzheng
    Li, Yi
    Griffith University Author(s)
    Ma, Fuhao
    Gilbert, Benoit
    Guan, Hong
    Xue, Huizhong
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Reinforced concrete (RC) flat plate structures are broadly used in car parks, residential and office buildings due to their economic and architectural advantages. However, this structural system is inherently prone to punching shear failure, which may propagate horizontally and vertically, ultimately leading to the progressive collapse of the entire structure or of a large portion of it. This paper presents the experimental results from two quasi-static large-displacement tests performed on a 1/3 scale, 2 × 2-bay, RC flat plate substructure subjected to corner column removal scenarios. The specimen was tested twice with ...
    View more >
    Reinforced concrete (RC) flat plate structures are broadly used in car parks, residential and office buildings due to their economic and architectural advantages. However, this structural system is inherently prone to punching shear failure, which may propagate horizontally and vertically, ultimately leading to the progressive collapse of the entire structure or of a large portion of it. This paper presents the experimental results from two quasi-static large-displacement tests performed on a 1/3 scale, 2 × 2-bay, RC flat plate substructure subjected to corner column removal scenarios. The specimen was tested twice with different corner reinforcement configurations: (i) firstly, one corner column, with torsional strips, was removed and the Uniformly Distributed Load (UDL) on the bay adjacent to the removed column was increased to failure (Test T1), and (ii) secondly, as the damage was concentrated in the vicinity of removed corner column in (i), the corner column diagonally opposite to the first removed one, without torsional strips, was removed. The UDL on the bay adjacent to the second removed column was also increased to failure (Test T2). Different failure and post-failure behaviours, failure modes, and collapse resisting mechanisms between the two tests were witnessed, presented and analysed. Results show that 80% to 110% of the applied load is transferred to the two edge columns adjacent to the removed corner column throughout the entire two tests. The ultimate load carrying capacity for T1 is found to be 1.7 times smaller than the one for T2.
    View less >
    Journal Title
    ENGINEERING STRUCTURES
    Volume
    180
    DOI
    https://doi.org/10.1016/j.engstruct.2018.11.043
    Copyright Statement
    © 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Civil Engineering
    Materials Engineering
    Interdisciplinary Engineering
    Publication URI
    http://hdl.handle.net/10072/383741
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander