• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Carbon-coated three-dimensional WS2 film consisting of WO3@WS2 core-shell blocks and layered WS2 nanostructures as counter electrodes for efficient dye-sensitized solar cells

    Author(s)
    Shen, Zhangfeng
    Wang, Meiwen
    Liu, Lihong
    Sofianos, M Veronica
    Yang, Huagui
    Wang, Shaobin
    Liu, Shaomin
    Griffith University Author(s)
    Yang, Huagui
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    The possibility of using solar energy for electricity generation has inspired intensive enthusiasm on the development of solar cell devices. This work reports the synthesis of a novel counter electrode (CE) composed of WOx@WS2@carbon core-shell film and compares its electrical and electrocatalytic performances with other two CEs of WOx/carbon film and conventional Pt in the dye-sensitized solar cells (DSSCs). The WOx@WS2@carbon CE was prepared by a sulfurization treatment of a mesoporous WOx/carbon film coated on fluorine-doped tin oxide (FTO) glass. The well-interconnected three-dimensional (3D) WS2 structure with coated ...
    View more >
    The possibility of using solar energy for electricity generation has inspired intensive enthusiasm on the development of solar cell devices. This work reports the synthesis of a novel counter electrode (CE) composed of WOx@WS2@carbon core-shell film and compares its electrical and electrocatalytic performances with other two CEs of WOx/carbon film and conventional Pt in the dye-sensitized solar cells (DSSCs). The WOx@WS2@carbon CE was prepared by a sulfurization treatment of a mesoporous WOx/carbon film coated on fluorine-doped tin oxide (FTO) glass. The well-interconnected three-dimensional (3D) WS2 structure with coated carbon film provides high electrocatalytic activity and fast reaction kinetics for the reduction of triiodide to iodide due to its sufficient active sites on 3D WS2 framework containing surface edge-oriented nanosheets and the facile electron transfer and electrolyte diffusion via the continuously carbon layer. Photovoltaic performance tests indicate the DSSC device with the counter electrode of WOx@WS2@carbon core-shell achieved the power conversion efficiency (PCE) of 7.71% compared favourably with the values of 6.00% from WOx/carbon CE and 7.34% from conventional Pt CE. Such results vividly mirror that the developed WOx@WS2@carbon core-shell can replace the conventional Pt film, realizing Pt-free counter electrodes for DSSCs.
    View less >
    Journal Title
    ELECTROCHIMICA ACTA
    Volume
    266
    DOI
    https://doi.org/10.1016/j.electacta.2018.02.009
    Subject
    Physical sciences
    Chemical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/383829
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander