• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Enantioseparation of Au-20(PP3)(4)Cl-4 Clusters with Intrinsically Chiral Cores

    Author(s)
    Zhu, Yanfei
    Wang, Hui
    Wan, Kaiwei
    Guo, Jun
    He, Chunting
    Yu, Yue
    Zhao, Luyang
    Zhang, Yin
    Lv, Jiawei
    Shi, Lin
    Jin, Renxi
    Zhang, Xinxiang
    Shi, Xinghua
    Tang, Zhiyong
    Griffith University Author(s)
    Tang, Zhiyong
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Au20(PP3)4Cl4 (PP3=tris(2‐(diphenylphosphino)ethyl) phosphine), abbreviated as Au20, is the only Au nanocluster with an intrinsically chiral core without a chiral environment (chiral ligands or Au‐thiolate staples), making it a unique object to understand chiral evolution and explore chiral applications. Unfortunately, the synthesized Au20 is racemic, and its enantiomers have not yet been separated. Herein, we report a supramolecular assembly strategy with α‐cyclodextrin (α‐CD) to afford enantiopure Au20 in bulk, and an enantiomer excess (ee) value of as‐separated Au20 of 97 %. As a result of its high purity, the distinctive ...
    View more >
    Au20(PP3)4Cl4 (PP3=tris(2‐(diphenylphosphino)ethyl) phosphine), abbreviated as Au20, is the only Au nanocluster with an intrinsically chiral core without a chiral environment (chiral ligands or Au‐thiolate staples), making it a unique object to understand chiral evolution and explore chiral applications. Unfortunately, the synthesized Au20 is racemic, and its enantiomers have not yet been separated. Herein, we report a supramolecular assembly strategy with α‐cyclodextrin (α‐CD) to afford enantiopure Au20 in bulk, and an enantiomer excess (ee) value of as‐separated Au20 of 97 %. As a result of its high purity, the distinctive optical activity of Au20, which originates from electronic transitions confined in chiral cores, is fully explored. Theoretical studies reveals that the enantioseparation results from the preferential self‐assembly of α‐CD with organic ligands on the surface of right‐handed Au20.
    View less >
    Journal Title
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
    Volume
    57
    Issue
    29
    DOI
    https://doi.org/10.1002/anie.201805695
    Subject
    Chemical sciences
    Publication URI
    http://hdl.handle.net/10072/383831
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander