Offline Bengali Writer Verification by PDF-CNN and Siamese Net

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Adak, Chandranath
Marinai, Simone
Chaudhuri, Bidyut B
Blumenstein, Michael
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
Automated handwriting analysis is a popular area of research owing to the variation of writing patterns. In this research area, writer verification is one of the most challenging branches, having direct impact on biometrics and forensics. In this paper, we deal with offline writer verification on complex handwriting patterns. Therefore, we choose a relatively complex script, i.e., Indic Abugida script Bengali (or, Bangla) containing more than 250 compound characters. From a handwritten sample, the probability distribution functions (PDFs) of some handcrafted features are obtained and input to a convolutional neural network ...
View more >Automated handwriting analysis is a popular area of research owing to the variation of writing patterns. In this research area, writer verification is one of the most challenging branches, having direct impact on biometrics and forensics. In this paper, we deal with offline writer verification on complex handwriting patterns. Therefore, we choose a relatively complex script, i.e., Indic Abugida script Bengali (or, Bangla) containing more than 250 compound characters. From a handwritten sample, the probability distribution functions (PDFs) of some handcrafted features are obtained and input to a convolutional neural network (CNN). For such a CNN architecture, we coin the term "PDFCNN", where handcrafted feature PDFs are hybridized with auto-derived CNN features. Such hybrid features are then fed into a Siamese neural network for writer verification. The experiments are performed on a Bengali offline handwritten dataset of 100 writers. Our system achieves encouraging results, which sometimes exceed the results of state-of-the-art techniques on writer verification.
View less >
View more >Automated handwriting analysis is a popular area of research owing to the variation of writing patterns. In this research area, writer verification is one of the most challenging branches, having direct impact on biometrics and forensics. In this paper, we deal with offline writer verification on complex handwriting patterns. Therefore, we choose a relatively complex script, i.e., Indic Abugida script Bengali (or, Bangla) containing more than 250 compound characters. From a handwritten sample, the probability distribution functions (PDFs) of some handcrafted features are obtained and input to a convolutional neural network (CNN). For such a CNN architecture, we coin the term "PDFCNN", where handcrafted feature PDFs are hybridized with auto-derived CNN features. Such hybrid features are then fed into a Siamese neural network for writer verification. The experiments are performed on a Bengali offline handwritten dataset of 100 writers. Our system achieves encouraging results, which sometimes exceed the results of state-of-the-art techniques on writer verification.
View less >
Conference Title
2018 13th IAPR International Workshop on Document Analysis Systems (DAS)
Copyright Statement
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Subject
Software engineering