• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Offline Bengali Writer Verification by PDF-CNN and Siamese Net

    Thumbnail
    View/Open
    Adak207891.pdf (447.2Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Adak, Chandranath
    Marinai, Simone
    Chaudhuri, Bidyut B
    Blumenstein, Michael
    Griffith University Author(s)
    Adak, Chandranath
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Automated handwriting analysis is a popular area of research owing to the variation of writing patterns. In this research area, writer verification is one of the most challenging branches, having direct impact on biometrics and forensics. In this paper, we deal with offline writer verification on complex handwriting patterns. Therefore, we choose a relatively complex script, i.e., Indic Abugida script Bengali (or, Bangla) containing more than 250 compound characters. From a handwritten sample, the probability distribution functions (PDFs) of some handcrafted features are obtained and input to a convolutional neural network ...
    View more >
    Automated handwriting analysis is a popular area of research owing to the variation of writing patterns. In this research area, writer verification is one of the most challenging branches, having direct impact on biometrics and forensics. In this paper, we deal with offline writer verification on complex handwriting patterns. Therefore, we choose a relatively complex script, i.e., Indic Abugida script Bengali (or, Bangla) containing more than 250 compound characters. From a handwritten sample, the probability distribution functions (PDFs) of some handcrafted features are obtained and input to a convolutional neural network (CNN). For such a CNN architecture, we coin the term "PDFCNN", where handcrafted feature PDFs are hybridized with auto-derived CNN features. Such hybrid features are then fed into a Siamese neural network for writer verification. The experiments are performed on a Bengali offline handwritten dataset of 100 writers. Our system achieves encouraging results, which sometimes exceed the results of state-of-the-art techniques on writer verification.
    View less >
    Conference Title
    2018 13th IAPR International Workshop on Document Analysis Systems (DAS)
    DOI
    https://doi.org/10.1109/das.2018.33
    Copyright Statement
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Software engineering
    Publication URI
    http://hdl.handle.net/10072/383988
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander