• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • More Realistic and Efficient Face-Based Mobile Authentication using CNNs

    Author(s)
    Das, Abhijit
    Sengupta, Abira
    Saqib, Muhammad
    Pal, Umapada
    Blumenstein, Michael
    Griffith University Author(s)
    Das, Abhijit
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    In this work, we propose a more realistic and efficient face-based mobile authentication technique using CNNs. This paper discusses and explores an inevitable problem of using face images for mobile authentication, taken from varying distances with a front/selfie camera of the mobile phone. Incidentally, once an individual comes towards a certain distance from the camera, the face images get large and appear over-sized. Simultaneously sharp features of some portions of the face, such as forehead, cheek, and chin are changed completely. As a result, the face features change and the impact increases exponentially once the ...
    View more >
    In this work, we propose a more realistic and efficient face-based mobile authentication technique using CNNs. This paper discusses and explores an inevitable problem of using face images for mobile authentication, taken from varying distances with a front/selfie camera of the mobile phone. Incidentally, once an individual comes towards a certain distance from the camera, the face images get large and appear over-sized. Simultaneously sharp features of some portions of the face, such as forehead, cheek, and chin are changed completely. As a result, the face features change and the impact increases exponentially once the individual crosses a certain distance and gradually approaches towards the front camera. This work proposes a solution (achieving better accuracy and facial features, whereby face images were cropped and aligned around its close bounding box) to mitigate the aforementioned identified gap. The work investigated different frontier face detection and recognition techniques to justify the proposed solution. Among all the employed methods evaluated, CNNs worked best. For a quantitative comparison of the proposed method, manually cropped face images/annotations of the face images along with their close boundary were prepared. In turn, we have developed a database considering the above-mentioned scenario for 40 individuals, which will be publicly available for academic research purposes. The experimental results achieved indicate a successful implementation of the proposed method and the performance of the proposed technique is also found to be superior in comparison to the existing state-of-the-art.
    View less >
    Conference Title
    2018 International Joint Conference on Neural Networks (IJCNN)
    DOI
    https://doi.org/10.1109/ijcnn.2018.8489070
    Subject
    Artificial intelligence
    Publication URI
    http://hdl.handle.net/10072/384044
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander