• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Cervical spine kinematics during machine-based and live scrummaging

    Author(s)
    Cerrito, Adrien
    Milburn, Peter
    Alston-Knox, Clair
    Evans, Kerrie
    Griffith University Author(s)
    Alston-Knox, Clair L.
    Milburn, Peter D.
    Evans, Kerrie A.
    Cerrito, Adrien
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    The aim of this study was to compare cervical spine kinematics in rugby union front row players during machine-based and "live" scrummaging. Cervical spine kinematics was measured via electromagnetic tracking of sensors attached to the head and thorax. Joint angles were extracted from each trial at two time points ("bind" prior to engagement and instant of impact) for comparison between scrummaging conditions. The effect of scrummaging condition on kinematics was evaluated using a mixed effects model and estimations were based on a Bayesian framework. With differences ranging from 38° to 50°, the results show that the cervical ...
    View more >
    The aim of this study was to compare cervical spine kinematics in rugby union front row players during machine-based and "live" scrummaging. Cervical spine kinematics was measured via electromagnetic tracking of sensors attached to the head and thorax. Joint angles were extracted from each trial at two time points ("bind" prior to engagement and instant of impact) for comparison between scrummaging conditions. The effect of scrummaging condition on kinematics was evaluated using a mixed effects model and estimations were based on a Bayesian framework. With differences ranging from 38° to 50°, the results show that the cervical spine is consistently more flexed when scrummaging against opponents than against a scrum machine. In contrast, there are little differences in the excursion of lateral-flexion (range 5-8°) and axial rotation (7°) between the two conditions. The findings from this study provide clear information on motion patterns in different scrum formations, and suggest that the current design of scrum machines may not promote the same pattern of movement that occurs in live scrums. The results highlight that findings from previous studies that have investigated kinematics during machine-based scrummaging may not be generalisable to a competitive scrummaging context.
    View less >
    Journal Title
    JOURNAL OF SPORTS SCIENCES
    Volume
    37
    Issue
    13
    DOI
    https://doi.org/10.1080/02640414.2019.1576254
    Subject
    Sports science and exercise
    Curriculum and pedagogy
    Publication URI
    http://hdl.handle.net/10072/384060
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander