Screening DNA repeat tracts of phase variable genes by fragment analysis
Abstract
Fragment analysis (or fragment length analysis) is a PCR-based method which allows quantification of the size and proportion of a DNA repeat tract length of a phase-variable region. Primers are labeled with a fluorescent dye, the resulting amplicons are processed by capillary electrophoresis, and results are analyzed for amplicon size and proportion by associated software (such as Peakscanner). Here we describe the process of designing primers and controls to screen for the number of repeats in a polymeric tract of a phase-variable gene in Neisseria meningitidis (the DNA methyltransferase ModA is used as an example, but this ...
View more >Fragment analysis (or fragment length analysis) is a PCR-based method which allows quantification of the size and proportion of a DNA repeat tract length of a phase-variable region. Primers are labeled with a fluorescent dye, the resulting amplicons are processed by capillary electrophoresis, and results are analyzed for amplicon size and proportion by associated software (such as Peakscanner). Here we describe the process of designing primers and controls to screen for the number of repeats in a polymeric tract of a phase-variable gene in Neisseria meningitidis (the DNA methyltransferase ModA is used as an example, but this method can be applied to other phase-variable genes).
View less >
View more >Fragment analysis (or fragment length analysis) is a PCR-based method which allows quantification of the size and proportion of a DNA repeat tract length of a phase-variable region. Primers are labeled with a fluorescent dye, the resulting amplicons are processed by capillary electrophoresis, and results are analyzed for amplicon size and proportion by associated software (such as Peakscanner). Here we describe the process of designing primers and controls to screen for the number of repeats in a polymeric tract of a phase-variable gene in Neisseria meningitidis (the DNA methyltransferase ModA is used as an example, but this method can be applied to other phase-variable genes).
View less >
Book Title
Neisseria meningitidis: Methods and Protocols
Volume
1969
Funder(s)
NHMRC
Grant identifier(s)
APP1099279
APP1045235
Copyright Statement
© 2019 Springer. This is an electronic version of an article published in Methods in Molecular Biology, Vol., 1969:93-104, 2019. Methods in Molecular Biology is available online at: http://link.springer.com/ with the open URL of your article.
Subject
Biochemistry and cell biology
Other chemical sciences
Fragment analysis
Polymeric DNA tract
Phase-variable gene
DNA repeat sequence