• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Validity of a contact mat and accelerometric system to assess countermovement jump from flight time

    Thumbnail
    View/Open
    Doering211654.pdf (304.1Kb)
    Author(s)
    Stanton, Robert
    Doering, Thomas M
    Macgregor, Campbell
    Borges, Nattai
    Delvecchio, Luke
    Griffith University Author(s)
    Doering, Thomas M.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Countermovement jump (CMJ) height is an important parameter in physical performance. This study compared CMJ height measured using ChronoJump contact mat (CJ) and Myotest accelerometer (MT) systems with a force platform (FP). Thirty recreationally active adults (32.1 ± 10.4 years, 75.9 ± 12.0 kg, 173.2 ± 6.3 cm) completed a CMJ protocol where height was simultaneously recorded using the three systems. CJ and MT measures were strongly and significant correlated (r = 0.65, 0.66, respectively; p < 0.05) with FP. CJ-derived measures were not significantly different to FP measures (p > 0.05), yet MT-derived measures were significantly ...
    View more >
    Countermovement jump (CMJ) height is an important parameter in physical performance. This study compared CMJ height measured using ChronoJump contact mat (CJ) and Myotest accelerometer (MT) systems with a force platform (FP). Thirty recreationally active adults (32.1 ± 10.4 years, 75.9 ± 12.0 kg, 173.2 ± 6.3 cm) completed a CMJ protocol where height was simultaneously recorded using the three systems. CJ and MT measures were strongly and significant correlated (r = 0.65, 0.66, respectively; p < 0.05) with FP. CJ-derived measures were not significantly different to FP measures (p > 0.05), yet MT-derived measures were significantly different from those obtained using the FP (p < 0.05). Systematic bias was observed between FP and the CJ and between FP and MT. This study demonstrates the validity of CJ and MT systems for the assessment of CMJ height. Systematic bias and between-device differences in measurement should be considered when interpreting and comparing data from these devices.
    View less >
    Journal Title
    MEASUREMENT IN PHYSICAL EDUCATION AND EXERCISE SCIENCE
    Volume
    23
    Issue
    1
    DOI
    https://doi.org/10.1080/1091367X.2018.1493593
    Copyright Statement
    © 2019 Taylor & Francis (Routledge). This is an Accepted Manuscript of an article published by Taylor & Francis in Measurement in Physical Education and Exercise Science on 12 Jul 2018, available online: https://www.tandfonline.com/doi/full/10.1080/1091367X.2018.1493593
    Subject
    Sports science and exercise
    Curriculum and pedagogy
    Publication URI
    http://hdl.handle.net/10072/384162
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander