Show simple item record

dc.contributor.authorBocharova, I.en_US
dc.contributor.authorCocke, C.en_US
dc.contributor.authorLitvinyuk, I.en_US
dc.contributor.authorMagrakvelidze, M.en_US
dc.contributor.authorMashiko, H.en_US
dc.contributor.authorRanitovic, P.en_US
dc.contributor.authorRay, D.en_US
dc.date.accessioned2017-04-04T15:08:18Z
dc.date.available2017-04-04T15:08:18Z
dc.date.issued2008en_US
dc.date.modified2011-04-29T02:58:12Z
dc.identifier.issn10502947en_US
dc.identifier.doi10.1103/PhysRevA.77.053407en_AU
dc.identifier.urihttp://hdl.handle.net/10072/38419
dc.description.abstractWe followed fast evolution of coherent nuclear wave packets in H2 and D2 molecules after their interaction with 8-fs 800-nm laser pulses. The molecules were probed by another few-cycle pulse time delayed for up to 10 ps with respect to the pump. For neutral molecules we observed coherent rotational dynamics characterized by periodic revivals without noticeable decoherence within the 10 ps time scale. For heavy hydrogen up to four rotational states were involved in the wave packets for each of the two spin isomers. In light hydrogen the resulting dynamics was dominated by beating of just two rotational states. For neutral molecules the experi- mental results are in excellent agreement with our numerical simulations obtained by solving the time- dependent Schr椩nger equation. By measuring time-dependent yields for singly ionized rotating D2 mol- ecules, we conclude that for an 8-fs 3 ?????? 1014 W / cm2 pulse the ionization probability is nearly independent of the angle between the molecular axis and the electric ?eld. For those molecules that were ionized by the pump pulse we observed both vibrational and rotational dynamics. In molecular ions coherent vibrational wave packets evolving on the bound ??????g potential surface also exhibit revivals. Time-dependent angular distributions for the molecular ions exhibit transient alignment only soon after the pulse ??????18 fs for H 2+ and 35 fs for D2+?????? with no consequent revivals within the next 10 ps due to broad distribution of active vibrational states with different rotational constants.en_US
dc.description.peerreviewedYesen_US
dc.description.publicationstatusYesen_AU
dc.languageEnglishen_US
dc.language.isoen_AU
dc.publisherAmerican Physical Societyen_US
dc.publisher.placeCollege Park, Maryland, USAen_US
dc.relation.ispartofstudentpublicationNen_AU
dc.relation.ispartofpagefrom053407-1en_US
dc.relation.ispartofpageto053407-9en_US
dc.relation.ispartofissue5en_AU
dc.relation.ispartofjournalPhysical Review A (Atomic, Molecular and Optical Physics)en_US
dc.relation.ispartofvolume77en_US
dc.rights.retentionYen_AU
dc.subject.fieldofresearchAtomic and Molecular Physicsen_US
dc.subject.fieldofresearchcode020201en_US
dc.titleDirect Coulomb-explosion imaging of coherent nuclear dynamics induced by few-cycle laser pulses in light and heavy hydrogenen_US
dc.typeJournal articleen_US
dc.type.descriptionC1 - Peer Reviewed (HERDC)en_US
dc.type.codeC - Journal Articlesen_US
gro.date.issued2008
gro.hasfulltextNo Full Text


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record