• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A Hybrid Method for Text Line Extraction in Handwritten Document Images

    Thumbnail
    View/Open
    Alaei213887.pdf (387.1Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Kiumarsi, Ehsan
    Alaei, Alireza
    Griffith University Author(s)
    Alaei, Ali Reza R.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Text line segmentation in handwritten document image, as one of the preliminarily steps for document image recognition, is a challenging problem. In this paper, a hybrid method for text line extraction in handwritten document images is presented. Initially, a connected component (CC) labelling method following by a CC filtering is employed to extract a set of CCs from the input document image. A new distance measure is introduced to compute normal distances between the extracted CCs. By traversing the normal distance matrix from both the right and left directions, half-chains of CCs are constructed. The CCs half-chains are ...
    View more >
    Text line segmentation in handwritten document image, as one of the preliminarily steps for document image recognition, is a challenging problem. In this paper, a hybrid method for text line extraction in handwritten document images is presented. Initially, a connected component (CC) labelling method following by a CC filtering is employed to extract a set of CCs from the input document image. A new distance measure is introduced to compute normal distances between the extracted CCs. By traversing the normal distance matrix from both the right and left directions, half-chains of CCs are constructed. The CCs half-chains are merged to obtain CCs full-chains. From the extracted full-chains separator lines are obtained. A gradient metric is proposed to detect and remove touching text lines. Using remaining separator lines the adaptive projection profile of the image is computed. Based on the projection profile, coarse text line extraction is performed. Finally, a fine text lines extraction is performed by applying a postprocessing step. To evaluate the method, two benchmarks named ICDAR2013 handwriting segmentation contest, and Kannada datasets composed of handwritten document images in English, Greek, Bengali, and Kannada languages were considered for experimentation. Experimental results indicate a promising performance was obtained compared to some of the state-of-the-art methods.
    View less >
    Conference Title
    2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR)
    DOI
    https://doi.org/10.1109/icfhr-2018.2018.00050
    Copyright Statement
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Pattern recognition
    Data mining and knowledge discovery
    Publication URI
    http://hdl.handle.net/10072/384243
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander