• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Trainable back-propagated functional transfer matrices

    Author(s)
    Cai, Cheng-Hao
    Xu, Yanyan
    Ke, Dengfeng
    Su, Kaile
    Sun, Jing
    Griffith University Author(s)
    Su, Kaile
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Functional transfer matrices consist of real functions with trainable parameters. In this work, functional transfer matrices are used to model functional connections in neural networks. Different from linear connections in conventional weight matrices, the functional connections can represent nonlinear relations between two neighbouring layers. Neural networks with the functional connections, which are called functional transfer neural networks, can be trained via back-propagation. On the two spirals problem, the functional transfer neural networks are able to show considerably better performance than conventional multi-layer ...
    View more >
    Functional transfer matrices consist of real functions with trainable parameters. In this work, functional transfer matrices are used to model functional connections in neural networks. Different from linear connections in conventional weight matrices, the functional connections can represent nonlinear relations between two neighbouring layers. Neural networks with the functional connections, which are called functional transfer neural networks, can be trained via back-propagation. On the two spirals problem, the functional transfer neural networks are able to show considerably better performance than conventional multi-layer perceptrons. On the MNIST handwritten digit recognition task, the performance of the functional transfer neural networks is comparable to that of the conventional model. This study has demonstrated that the functional transfer matrices are able to perform better than the conventional weight matrices in specific cases, so that they can be alternatives of the conventional ones.
    View less >
    Journal Title
    APPLIED INTELLIGENCE
    Volume
    49
    Issue
    2
    DOI
    https://doi.org/10.1007/s10489-018-1266-3
    Subject
    Artificial intelligence
    Publication URI
    http://hdl.handle.net/10072/384324
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander