• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Magnesium-particle/polyurethane composite layer coating on titanium surfaces for orthopedic applications

    Author(s)
    Abdal-hay, Abdalla
    Agour, Mahmoud
    Kim, Yu-Kyoung
    Lee, Min-Ho
    Hassan, Mohamed K
    Abu El-Ainin, H
    Hamdy, Abdel Salam
    Ivanovski, Sago
    Griffith University Author(s)
    Ivanovski, Saso
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    This study aimed to design an adhesive biodegradable polymer layer on the surface of titanium (Ti) implants for enhanced surface bioactivity. To this end, a coating of magnesium-particles doped biodegradable polyurethane (PU) was introduced as a composite layer on Ti surfaces using a simple spin coating technique. The coating’s performance and characteristics were investigated in terms of the surface topography, composition, surface roughness, wettability, adhesion and electrochemical behavior of composite coatings on untreated (polished) and alkaline treated Ti substrates. Interestingly, the Ti samples coated with the ...
    View more >
    This study aimed to design an adhesive biodegradable polymer layer on the surface of titanium (Ti) implants for enhanced surface bioactivity. To this end, a coating of magnesium-particles doped biodegradable polyurethane (PU) was introduced as a composite layer on Ti surfaces using a simple spin coating technique. The coating’s performance and characteristics were investigated in terms of the surface topography, composition, surface roughness, wettability, adhesion and electrochemical behavior of composite coatings on untreated (polished) and alkaline treated Ti substrates. Interestingly, the Ti samples coated with the composite layers showed superior corrosion resistance compared to the uncoated samples. Additionally, the coating on alkali-treated Ti surfaces demonstrated enhanced adhesion (5B, measured by cross-cut test) compared to the coating on untreated Ti (1B), indicating the vital role of the alkaline-treatment step. A composite thin layer coated on alkaline-treated Ti enhanced osteoblastic-like (MC3T3-E1) cellular adhesion and cell proliferation and was found to support osteoblastic differentiation compared to uncoated alkaline-treated Ti. Surface modification of alkaline-treated Ti with a biodegradable Mg-particles/PU thin layer appears to be a promising strategy for developing surface bioactivity of orthopedic devices.
    View less >
    Journal Title
    EUROPEAN POLYMER JOURNAL
    Volume
    112
    DOI
    https://doi.org/10.1016/j.eurpolymj.2018.10.012
    Subject
    Macromolecular and materials chemistry
    Chemical engineering
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/384387
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander