• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effects of cannabinoids in Amyotrophic Lateral Sclerosis (ALS) murine models: a systematic review and meta-analysis

    Author(s)
    Urbi, Berzenn
    Owusu, Maame Amma
    Hughes, Ian
    Katz, Matthew
    Broadley, Simon
    Sabet, Arman
    Griffith University Author(s)
    Broadley, Simon
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder that results from motor neuron damage. Cannabinoids have been proposed as treatments for ALS because of their anti-excitotoxicity, anti-oxidant and anti-inflammatory effects. Preclinical studies in mice models of ALS have been published using a range of cannabinoid formulations and doses. To date, there has been no rigorous evaluation of these trials to assess a potential cannabinoid treatment effect. This review and meta-analysis was undertaken to provide evidence for or against a treatment effect of cannabinoids in murine ALS models. Evidence of a treatment ...
    View more >
    Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder that results from motor neuron damage. Cannabinoids have been proposed as treatments for ALS because of their anti-excitotoxicity, anti-oxidant and anti-inflammatory effects. Preclinical studies in mice models of ALS have been published using a range of cannabinoid formulations and doses. To date, there has been no rigorous evaluation of these trials to assess a potential cannabinoid treatment effect. This review and meta-analysis was undertaken to provide evidence for or against a treatment effect of cannabinoids in murine ALS models. Evidence of a treatment effect in mice may provide motivation for trials in human ALS. We identified a total of 10 studies; nine studies using cannabinoid treatment in transgenic SOD1-G93A ALS-model mice and one study in TDP-43 transgenic mice. Eight of the nine studies that used SOD1-G93A mice expressed similarly high copy numbers of the transgene while one study used a low-copy number line. Outcomes evaluated were survival time and disease progression. The latter was measured by motor function and bodyweight decline. Meta-analysis of the mean difference in survival time across the seven studies showed an increase in survival of 3.84 days (95% CI: 0.35-7.32 days; p = 0.031) for cannabinoid treated compared to control SOD1-G93A mice. It was not possible to conduct meta-analyses for motor function decline or weight loss. However, eight of nine studies reported significant improvements in measures of motor function decline and one reported non-significant improvements. Weight loss was significantly attenuated in four of five studies reporting this measure while the other study reported a non-significant attenuation. This review provides some evidence for the efficacy of cannabinoids in prolonging survival time in an ALS mouse model. A delay in disease progression is also suggested following cannabinoid treatment though it was not possible to consolidate the results from reviewed studies. However, studies have moderate to high risk of bias and are highly heterogeneous. Although this review provides some evidence to support the conduct of a cannabinoid trial in human ALS, more standardized studies on specific cannabinoids are necessary before supporting therapeutic potential of cannabinoids in treating patients with ALS. OPEN SCIENCE BADGES: This article has received a badge for *Preregistration* because the study was pre-registered at https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=89274. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Read the Editorial Highlight for this article on page 168.
    View less >
    Journal Title
    JOURNAL OF NEUROCHEMISTRY
    Volume
    149
    Issue
    2
    DOI
    https://doi.org/10.1111/jnc.14639
    Subject
    Biochemistry and cell biology
    Neurosciences
    Publication URI
    http://hdl.handle.net/10072/384406
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander