• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A dual functional redox enzyme maturation protein for respiratory and assimilatory nitrate reductases in bacteria

    Thumbnail
    View/Open
    Sullivan209604.pdf (1.404Mb)
    Author(s)
    Pinchbeck, Benjamin J
    Soriano-Laguna, Manuel J
    Sullivan, Matthew J
    Luque-Almagro, Victor M
    Rowley, Gary
    Ferguson, Stuart J
    Dolores Roldan, M
    Richardson, David J
    Gates, Andrew J
    Griffith University Author(s)
    Sullivan, Matthew J.
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Nitrate is available to microbes in many environments due to sustained use of inorganic fertilizers on agricultural soils and many bacterial and archaeal lineages have the capacity to express respiratory (Nar) and assimilatory (Nas) nitrate reductases to utilize this abundant respiratory substrate and nutrient for growth. Here, we show that in the denitrifying bacterium Paracoccus denitrificans, NarJ serves as a chaperone for both the anaerobic respiratory nitrate reductase (NarG) and the assimilatory nitrate reductase (NasC), the latter of which is active during both aerobic and anaerobic nitrate assimilation. Bioinformatic ...
    View more >
    Nitrate is available to microbes in many environments due to sustained use of inorganic fertilizers on agricultural soils and many bacterial and archaeal lineages have the capacity to express respiratory (Nar) and assimilatory (Nas) nitrate reductases to utilize this abundant respiratory substrate and nutrient for growth. Here, we show that in the denitrifying bacterium Paracoccus denitrificans, NarJ serves as a chaperone for both the anaerobic respiratory nitrate reductase (NarG) and the assimilatory nitrate reductase (NasC), the latter of which is active during both aerobic and anaerobic nitrate assimilation. Bioinformatic analysis suggests that the potential for this previously unrecognized role for NarJ in functional maturation of other cytoplasmic molybdenum-dependent nitrate reductases may be phylogenetically widespread as many bacteria contain both Nar and Nas systems.
    View less >
    Journal Title
    MOLECULAR MICROBIOLOGY
    Volume
    111
    Issue
    6
    DOI
    https://doi.org/10.1111/mmi.14239
    Copyright Statement
    © 2019 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
    Subject
    Biological sciences
    Agricultural, veterinary and food sciences
    Biomedical and clinical sciences
    Publication URI
    http://hdl.handle.net/10072/384457
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander