• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Experimental Quantum Switching for Exponentially Superior Quantum Communication Complexity

    Thumbnail
    View/Open
    Tischler214079.pdf (1.990Mb)
    Author(s)
    Wei, Kejin
    Tischler, Nora
    Zhao, Si-Ran
    Li, Yu-Huai
    Arrazola, Juan Miguel
    Liu, Yang
    Zhang, Weijun
    Li, Hao
    You, Lixing
    Wang, Zhen
    Chen, Yu-Ao
    Sanders, Barry C
    Zhang, Qiang
    Pryde, Geoff J
    Xu, Feihu
    Pan, Jian-Wei
    Griffith University Author(s)
    Pryde, Geoff
    Tischler, Nora
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Finding exponential separation between quantum and classical information tasks is like striking gold in quantum information research. Such an advantage is believed to hold for quantum computing but is proven for quantum communication complexity. Recently, a novel quantum resource called the quantum switch—which creates a coherent superposition of the causal order of events, known as quantum causality—has been harnessed theoretically in a new protocol providing provable exponential separation. We experimentally demonstrate such an advantage by realizing a superposition of communication directions for a two-party distributed ...
    View more >
    Finding exponential separation between quantum and classical information tasks is like striking gold in quantum information research. Such an advantage is believed to hold for quantum computing but is proven for quantum communication complexity. Recently, a novel quantum resource called the quantum switch—which creates a coherent superposition of the causal order of events, known as quantum causality—has been harnessed theoretically in a new protocol providing provable exponential separation. We experimentally demonstrate such an advantage by realizing a superposition of communication directions for a two-party distributed computation. Our photonic demonstration employs d-dimensional quantum systems, qudits, up to d=2 13 dimensions and demonstrates a communication complexity advantage, requiring less than (0.696±0.006) times the communication of any causally ordered protocol. These results elucidate the crucial role of the coherence of communication direction in achieving the exponential separation for the one-way processing task, and open a new path for experimentally exploring the fundamentals and applications of advanced features of indefinite causal structures.
    View less >
    Journal Title
    PHYSICAL REVIEW LETTERS
    Volume
    122
    Issue
    12
    DOI
    https://doi.org/10.1103/PhysRevLett.122.120504
    Copyright Statement
    © 2019 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Mathematical sciences
    Physical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/384472
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander